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Only human beings create the conceptual repertoire that underlies the lexicons of natural 

languages and that subserves the institutions of science, mathematics, government, religion, and 

art. Accounting for this astonishing feat is one of the foremost challenges in the cognitive and 

psychological sciences. As a matter of logic, any account must have the following structure: a 

specification of the initial representational repertoire that serves as the input to subsequent 

learning, a characterization of the differences between the initial and adult repertoires, and a 

characterization of the learning mechanisms that make possible conceptual development.   

In Part I (written by Renée Baillargeon), we first consider the question of the initial 

repertoire by presenting a case study of the system of representations that underlies reasoning 

about the physical world. We illustrate the properties of what has been called “core cognition” in 

the domain of physics, and also characterize how learning underlies changes in this system of 

representation within infancy. In Part II (written by Susan Carey), we turn to a case study of the 

acquisition of concepts of number. We characterize the core cognition systems with numerical 

content, outline the discontinuities between the initial representations and later ones, and 

describe the bootstrapping process that underlies the change. 

Part I: The Acquisition of Physical Knowledge 

Over the past two decades, substantial progress has been made in understanding how 

infants reason and learn about physical events. This research has led to the development of a new 

account of the development of infants’ physical reasoning (for recent reviews, see Baillargeon, 

Li, Gertner, & Wu, 2010; Baillargeon, Li, Ng, & Yuan, 2009a; Baillargeon, Wu, Gertner, Setoh, 

Kittredge, & Stavans, in press). In what follows, we briefly describe this account. 

Like several other researchers, we assume that infants are born equipped with a physical-

reasoning (PR) system—an abstract computational system that provides them with a skeletal 
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causal framework for making sense of the displacements and interactions of objects and other 

physical entities (e.g., Gelman, 1990; Leslie, 1995; Premack & Premack, 2003; Spelke, 

Breinlinger, Macomber, & Jacobson, 1992). Before we describe how the PR system operates, three 

general comments are in order. 

First, it should be understood that the PR system operates without conscious awareness. 

Infants are not aware of the causal framework they use when reasoning about physical events, any 

more than young children are aware of the grammar of their language as they begin to understand 

and produce sentences. 

Second, the PR system allows infants to reason and learn about the simple everyday 

physical events that were familiar to our distant evolutionary ancestors: for example, occlusion 

events (i.e. events in which an object moves or is placed behind another object, or occluder), 

containment events (i.e. events in which an object is placed inside a container), and collision events 

(i.e. events in which an object hits another object). In infancy, the PR system has relatively little to 

say about events that involve complex artifacts whose causal mechanisms are opaque to most 

adults—artifacts such as phones, computers, radios, and televisions. Although infants may learn to 

operate some of these artifacts, pedagogical processes may be necessary to support these 

acquisitions (e.g., Csibra & Gergerly, 2009; Futó, Téglás, Csibra, & Gergely, 2010). 

Finally, although our focus here is on the PR system, it should be kept in mind that this 

system is only a part of the complex cognitive architecture that underlies infants’ responses to 

objects and events. Following other researchers, we have argued that, in addition to the PR system, 

at least two other systems are involved in infants’ responses: an object-tracking (OT) and an 

object-representation (OR) system (e.g., Baillargeon et al., 2010; Wang & Baillargeon, 2008b; 

Wang & Mitroff, 2009). To illustrate the distinction between the three systems, consider a simple 
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static display involving a block and a can standing apart on an apparatus floor. As infants begin to 

attend to the objects, the OT system assigns an index to each object; each index functions as an 

attentional pointer that “sticks” to its object, enabling infants to keep track of it when it moves—to 

know where it is without having to search for it (e.g., Leslie, Xu, Tremoulet, & Scholl, 1998; 

Pylyshyn, 1989, 1994; Scholl & Leslie, 1999). As soon as the OT system assigns indexes to the 

block and can, the OR system begins to build a temporary file for each object, listing both 

individual (e.g., color) and relational (e.g. relative height) features (e.g., Huttenlocher, Duffy, & 

Levine, 2002; Kahneman, Treisman, & Gibbs, 1992; Needham, 2001; Rose, Gottfried, Melloy-

Carminar, & Bridger, 1982). If an experimenter then places the block inside the can, the PR system 

also becomes involved: the objects are now engaged in a physical interaction, and the PR system’s 

main purpose is that of interpreting and predicting the outcomes of such interactions (e.g., will the 

block fit through the can’s opening? will the block protrude above the can, or be visible through its 

sidewalls? if a block is later removed from the can, is it the same block as was seen before or a 

different one?). In the first year of life, object representations in the PR system often contain only a 

small subset of the information included in the object files of the OR system; as we explain more 

fully below, event representations in the PR system are initially very sparse (no doubt to facilitate 

learning) and become richer as infants gradually learn what information is useful for predicting and 

interpreting outcomes (for a fuller discussion of the links between the OR and PR systems, see 

Baillargeon et al., 2010).  

Core Concepts and Core Principles 

When infants watch a physical event, the PR system builds a specialized physical 

representation of the event. Any information included in this physical representation becomes 

subject to the PR system’s causal framework, which encompasses both core concepts and core 
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principles (e.g., Baillargeon et al., 2009a; Carey & Spelke, 1984; Gelman, 1990; Leslie, 1995; 

Premack & Premack, 2003; Spelke et al., 1992). 

Core concepts invoke unobservable elements that help explain events’ outcomes. Examples 

of core concepts include ‘force’ and ‘internal energy’ (these are listed in quote marks to emphasize 

that they are only primitive versions of the concepts used by scientists). When infants see an object 

hit another object, the PR system represents a force—like a directional arrow—being exerted by 

the first object onto the second one (e.g., Leslie, 1995; Leslie & Keeble, 1987). Furthermore, when 

infants see a novel object begin to move or change direction on its own, they categorize it as a self-

propelled object and endow it with an internal source of energy; infants recognize that a self-

propelled object can use its internal energy directly to control its own motion and indirectly—

through the application of force—to control the motion of other objects (e.g., Baillargeon, Wu, 

Yuan, Li, & Luo, 2009b; Gelman, Durgin, & Kaufman, 1995; Leslie, 1995; Luo, Kaufman, & 

Baillargeon, 2009; Pauen & Träuble, 2009; Premack, 1990; Saxe, Tenenbaum, & Carey, 2005; 

Woodward, Phillips, & Spelke, 1993). 

Core principles constrain infants’ expectations about objects’ displacements and 

interactions. Examples of core principles include ‘persistence’, ‘inertia’, and ‘gravity’ (again, these 

are listed in quote marks to emphasize that they are only primitive versions of the principles used 

by scientists). The principle of persistence states that, all other things being equal, objects persist, 

as they are, in time and space (e.g., Baillargeon, 2008; Baillargeon et al., 2009a). The persistence 

principle has many corollaries (e.g., Baillargeon, 2008; Spelke et al., 1992; Spelke, Phillips, & 

Woodward, 1995b), which specify that an object cannot occupy the same space as another object 

(solidity) and cannot spontaneously appear or disappear (continuity), break apart (cohesion), fuse 

with another object (boundedness), and change size, shape, pattern, or color (unchangeableness). 
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The principle of inertia states that, all other things being equal, an object in motion will follow a 

smooth path, without abrupt changes in direction or speed (e.g., Kochukhova & Gredebäck, 2007; 

Luo et al., 2009). Finally, the principle of gravity states that, all other things being equal, an object 

will fall when released in midair (e.g., Needham & Baillargeon, 1993; Premack & Premack, 2003).  

Structural Information 

When infants watch a physical event, the PR system begins by representing the structural 

information about the event. This structural information includes both spatiotemporal and 

categorical information. The spatiotemporal information describes how the objects are arranged 

and how this arrangement changes over time as the event unfolds (e.g., Kestenbaum, Termine, & 

Spelke, 1987; Needham & Ormsbee, 2003; Slater, 1995; Yonas & Granrud, 1984). The categorical 

information specifies what kinds of objects are involved in the event, by providing categorical 

descriptors for each object. Early descriptors include (1) abstract ontological descriptors, such as 

whether the objects in the event are human or non-human, agentive or non-agentive, and inert or 

self-propelled (e.g., Bonatti, Frot, & Mehler, 2005; Bonatti, Frot, Zangl, & Mehler, 2002; Csibra, 

2008; Johnson, Shimizu, & Ok, 2007; Luo et al., 2009; Saxe, Tzlenic, & Carey, 2007; Surian & 

Caldi, 2010; Träuble & Pauen, 2011b), and (2) primitive functional descriptors, such as whether 

the objects in the event are closed, open at the top to form containers, open at the bottom to form 

covers, or open at both ends to form tubes (e.g., Hespos & Baillargeon, 2001b; Wang & 

Baillargeon, 2006; Wang, Baillargeon, & Paterson, 2005; Wang & Kohne, 2007; see also Träuble 

& Pauen, 2007, 2011a).  

Both the spatiotemporal and the categorical information about an event help specify how 

many objects are involved in the event. For example, if two identical objects stand apart on a table 

and a screen is lifted to hide them, the spatiotemporal information will specify that two objects are 
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present behind the screen (e.g., Aguiar & Baillargeon, 1999, 2002). Similarly, if a human 

disappears behind a large screen and what reappears is a non-human object, the categorical 

information will specify that two distinct objects are involved in the event, one human and one 

non-human (e.g., Bonatti et al., 2002, 2005). 

With experience, the PR system begins to identify distinct event categories—kinds of 

causal interactions in which objects play specific roles. In addition to occlusion, containment, and 

collision events (which were described earlier), early event categories include covering events (i.e. 

events which a cover is placed over an object), tube events (i.e. events in which an object is placed 

inside a tube), and arrested-motion events (i.e. events in which an object is brought short against an 

extended surface such as a wall or floor). As a rule, events that do not involve causal interactions 

and have no physical consequences (e.g., events in which an object is simply placed next to 

another object) are not identified as event categories. When infants watch an event from a known 

category, the PR system uses the structural information available in the physical representation to 

categorize the event (e.g., Casasola, Cohen, & Chiarello, 2003; Hespos & Baillargeon, 2006; 

McDonough, Choi, & Mandler, 2003; Quinn, 2007; Wang & Baillargeon, 2006; Wilcox & Chapa, 

2002) and to assign specific roles to the objects in the event (e.g., Leslie & Keeble, 1987; Onishi, 

2011). As an example, consider a simple event involving two identical blocks, block-A and block-

B. If block-A is used to hit block-B, the event is categorized as a collision event, with block-A as 

the ‘hitter’ and block-B as the ‘hittee’. If block-B is lowered behind block-A, the event is 

categorized as an occlusion event, with block-A as the ‘occluder’ and block-B as the ‘occludee’. 

After watching one of these events repeatedly, infants look reliably longer if the two objects 

change roles (e.g., if block-A becomes the hittee in the collision event).  

The structural information about an event thus captures its essence: it specifies how many 
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objects are involved (e.g., two objects), what kinds of objects they are (e.g., non-human, non-

agentive, inert, closed objects), what kind of causal interaction the objects are engaged in (e.g., a 

collision event), and what role each object plays in this interaction (e.g., object-A is the hitter, 

object-B is the hittee).  

Over time, at least two changes take place in the structural information infants encode 

about events. One change concerns the categorical information: as infants begin to routinely 

encode objects in terms of their taxonomic categories (e.g., a spoon, a cookie), these specific 

categorical descriptors also come to be included at the structural level of the PR system, along with 

the more general (ontological and functional) categorical descriptors discussed above (e.g., Xu & 

Carey, 1996; Xu, 2002). The second change concerns the spatiotemporal information: not only is 

this information represented more accurately over time (e.g., as depth perception improves; Yonas 

& Granrud, 1984), but descriptions of object interactions also become more precise. For example, 

infants initially fail to distinguish between events in which an object is released on top of or against 

another object; in each case, infants simply encode “object released in contact with another object”, 

and they hold no particular expectation about whether the released object should remain stable or 

fall. By 4.5 to 5.5 months of age, however, infants identify support as an event category: they 

recognize that when an object, or ‘supportee’, is placed on top of another object, or ‘supporter’, the 

supportee’s fall is blocked by the supporter. As a result, infants now expect objects to remain stable 

when released on top of, but not against, other objects (Li, Baillargeon, & Needham, 2011). 

 Detecting structural violations. In the first months of life, infants’ physical representations 

typically include only structural information and are therefore rather sparse. Nevertheless, this 

information is still sufficient, when interpreted by the PR system’s causal framework, to allow 

infants to hold at least some expectations about physical events. To uncover these expectations, 
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researchers often use violation-of-expectation tasks. In a typical task, infants see two test events: an 

expected event, which is consistent with the expectation examined in the experiment, and an 

unexpected event, which violates this expectation. With appropriate controls, evidence that infants 

look reliably longer at the unexpected than at the expected event is taken to indicate that they 

possess the expectation under investigation and detect the violation in the unexpected event. 

For example, young infants detect a persistence violation (see Figure 1) when a cover is 

lowered over an object, slid to the side, and then lifted to reveal no object (Leslie, 1995; Wang et 

al., 2005); when an object is lowered inside an open container which is then slid forward and to the 

side to reveal the object standing in the container’s initial position (Hespos & Baillargeon, 2001b); 

when an object is placed behind a screen, which then rotates through the space occupied by the 

object (Baillargeon, 1987; Baillargeon, Spelke, & Wasserman, 1985); and when a cover is lowered 

over a closed object and then lifted to reveal an open object (Wu & Baillargeon, 2011). 

In addition, young infants detect an inertia violation when an inert object, after being set 

into motion, abruptly reverses direction to return to its starting position (Luo et al., 2009); and they 

detect a gravity violation if an inert object remains suspended when released in midair (e.g., Luo et 

al., 2009; Needham & Baillargeon, 1993). Interestingly, young infants do not view these last two 

events as violations if the object is self-propelled rather than inert (Kochukhova & Gredebäck, 

2007; Luo et al., 2009). This is not to say that young infants believe self-propelled objects are not 

subject to the same principles as inert objects. Rather, infants assume that a novel self-propelled 

object may be able to use its internal energy to exert some control over its horizontal and vertical 

displacements: in particular, it may be able to change direction at will and to “resist” falling. At the 

same time, young infants recognize that there are limits to what self-propelled objects can do, 

despite their internal energy: for example, infants appreciate that self-propelled objects cannot 
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spontaneously disappear or pass through obstacles (e.g., Aguiar & Baillargeon, 1999; Luo et al., 

2009; Saxe, Tzelnic, & Carey, 2006; Spelke, Kestenbaum, Simons, & Wein, 1995a). 

Kinds of explanations. The discussion in the preceding paragraph illustrates a key feature 

of physical reasoning in early infancy: young infants’ explanations for events tend to be shallow, 

abstract explanations almost entirely divorced of mechanistic details. Upon seeing that a novel box 

initiates its own motion, for example, young infants endow it with internal energy and assume it 

can also use this energy to “resist” falling when released in midair. As adults, we may naturally 

find this assumption puzzling: we possess sufficient physical knowledge to realize that (outside of 

the realm of science-fiction) a self-propelled box would be highly unlikely to remain perfectly 

stationary in midair. 

 Infants’ physical reasoning brings to mind Keil’s (1995) suggestion that adults’ concepts 

are “embedded in theory-like structures which owe their origins to a small but diverse set of 

fundamental modes of construal...one key part of these early modes of construal may be more 

general expectations...[that] exist before any specific explanation or detailed intuitive theory, and 

thus indicate kinds of explanations rather than any particular explanation” (pp. 260-261, italics 

added). In line with Keil’s suggestion, we believe that the PR system’s core concepts and 

principles provide infants with shallow kinds of explanations, rather than with specific or detailed 

mechanistic explanations, for events. 

Variable Information 

We have just seen that, in the first few months of life, the PR system includes only 

structural information in its physical representations of events. Although this information captures 

many essential elements, it is still very limited. If a spoon is placed inside a pot, for example, the 

structural information about the event specifies that a non-human, non-agentive, inert, closed 
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object has been placed inside a non-human, non-agentive, inert container—but it does not specify 

the size, shape, pattern, and color of either object. How does this more detailed information come 

to be added to infants’ physical representations? 

For each event category, infants gradually identify a host of variables that help them 

interpret and predict outcomes within the category (e.g., Baillargeon, Needham, & DeVos, 1992; 

Hespos & Baillargeon, 2008; Kotovsky & Baillargeon, 1998; Luo & Baillargeon, 2005; Wang, 

Kaufman, Baillargeon, 2003; Wilcox, 1999). A variable both calls infants’ information to a certain 

type of information in an event (e.g., features of objects or their arrangements) and provides a 

causal rule for interpreting this information. To illustrate, consider some of the variables infants 

identify for containment events (see Figure 2). By about 4 months of age, most infants have 

identified width as a relevant variable, and they now detect a violation when a wide object becomes 

fully hidden inside a narrow container (Wang, Baillargeon, & Brueckner, 2004). By about 7.5 

months of age, most infants have identified height as a containment variable: they now detect a 

violation if a tall object becomes almost fully hidden inside a short container (Hespos & 

Baillargeon, 2001a). By about 9.5 months of age, most infants have identified container-surface as 

a relevant variable: they now detect a violation if an object becomes fully hidden when placed 

inside a container that is made of a transparent or holey material (Luo & Baillargeon, 2011). 

Finally, by about 14.5 months of age, infants identify color as a containment variable: they now 

detect a violation if a yellow toy is lowered inside a container (large enough to hide only one toy), 

and a purple toy is then removed from the container (Setoh & Baillargeon, 2011). 

With the gradual identification of variables, infants’ physical representations become 

increasingly richer (see Figure 3). After representing the structural information about an event and 

using this information to categorize the event, the PR system accesses the list of variables that have 
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been identified as relevant for predicting outcomes in the category selected. The PR system then 

gathers information about each variable and includes this information in the physical representation 

of the event. This variable information is then interpreted by the variable rules as well as by the PR 

system’s causal framework. 

To illustrate this process, consider what variable information 7.5-month-olds would include 

in their physical representation of a containment event in which a ball was lowered inside a box. 

By 7.5 months, as we just saw, width and height have been identified as containment variables, but 

container-surface and color have not. Thus, infants would include information about the relative 

widths and heights of the ball and box in their physical representation of the event, but not 

information about the container’s surface or about the ball’s color. As a rule, the PR system does 

not include information about variables that have not yet been identified in its physical 

representation of an event (e.g., Hespos & Baillargeon, 2001a; Kotovsky & Baillargeon, 1998; Luo 

& Baillargeon, 2005; Newcombe, Huttenlocher, & Learmonth, 1999).  

Décalages. We have just seen that, for each event category, infants gradually identify 

variables that enable them to better predict outcomes within the category. One might ask whether 

variables identified in the context of one event category are generalized to other categories, when 

equally relevant. For example, after infants learn to attend to height information in containment 

events, do they also attend to this information in covering or in tube events? Interestingly, the 

answer to such questions has turned out to be negative: a variable identified in the context of one 

category is not generalized to other categories, even when equally relevant (e.g., Hespos & 

Baillargeon, 2001a, 2006; Wang et al., 2005; Wang & Baillargeon, 2006; Wang & Kohne, 2007). 

Infants thus learn separately about each event category. 

 In some cases, infants may identify a variable at about the same age in different event 
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categories. For example, the variable width is identified at about the same age in occlusion and in 

containment events (Wang et al., 2004). In other cases, however, several months may separate the 

acquisition of the same variable in different event categories, resulting in marked lags or décalages 

(to use a Piagetian term) in infants’ responses to similar events in different event categories. As a 

case in point, consider the variable height (see Figure 4). Although this variable is identified at 

about 7.5 months in containment events, as we just saw (Hespos & Baillargeon, 2001a), it is 

identified earlier, at about 3.5 months, in occlusion events (Baillargeon & DeVos, 1991); it is 

identified later, at about 12 months, in covering events (Wang et al., 2005); and it is identified later 

still, at about 14.5 months, in tube events (Wang et al., 2005).  

Décalages have been observed not only in violation-of-expectation tasks, as we just saw, 

but also in action tasks (e.g., Hespos & Baillargeon, 2006; Wang & Kohne, 2007). In one 

experiment, for example, 6- and 7.5-month-olds first played with a tall stuffed frog (Hespos & 

Baillargeon, 2006). Next, the frog was placed behind a large screen, which was then removed to 

reveal a tall and a short occluder (occlusion condition) or a tall and a short container (containment 

condition). The occluders were identical to the front halves of the containers; two frog feet 

protruded on either side of each occluder or through small holes at the bottom of each container. At 

both ages, infants were reliably more likely to search for the frog behind the tall as opposed to the 

short occluder; however, only the 7.5-months-olds (who had identified height as a containment 

variable) were reliably more likely to search for the frog inside the tall as opposed to the short 

container. Control infants who did not see the frog tended to reach about equally for the two 

occluders or containers. 

Explanation-based learning. We suggested earlier that infants learn, with experience, what 

variables are helpful for interpreting and predicting outcomes in each event category. How does 
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this learning process occur? Building on work in machine learning by DeJong (1993, 1997), we 

have proposed that the identification of a variable depends on an explanation-based learning 

(EBL) process that involves three main steps (e.g., Baillargeon et al., 2009a; Wang & Baillargeon, 

2008).  

First, infants must notice contrastive outcomes relevant to the variable. This occurs when 

infants build similar physical representations for two or more events—and notice that the events 

have contrastive outcomes. For example, consider the variable height in covering events, which is 

typically identified at about 12 months of age (e.g., Wang et al., 2005). We suppose that at some 

point prior to 12 months of age, infants begin to notice—as they manipulate covers and objects, or 

as they observe others doing so—that when a cover is lowered over an object, the object 

sometimes remains partly visible beneath the cover and sometimes does not. Infants thus notice 

contrastive outcomes they cannot predict based on their current variable knowledge: similar 

physical representations (“cover lowered over object”) lead to contrastive outcomes (“object 

remains partly visible beneath cover” versus “object becomes fully hidden”), suggesting that a 

crucial piece of information is missing from the representations. 

 At this point, infants begin to search for the conditions that map onto these contrastive 

outcomes. Specifically, infants attempt to determine under what condition one outcome is 

observed, and under what condition the other outcome is observed. Eventually, infants uncover a 

regularity linking each outcome with a distinct condition (we assume that infants’ statistical 

learning mechanisms help detect these regularities; e.g., Fiser & Aslin, 2002; Saffran, 2009). In the 

case of the variable height in covering events, infants detect that objects remain partly visible when 

placed under covers that are shorter than the objects, and become fully hidden when placed under 

covers that are as tall as or taller than the objects. 
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Finally, infants attempt to generate an explanation for the condition-outcome regularity 

detected, based on their prior knowledge. According to the EBL process, only condition-outcome 

regularities for which explanations can be provided are recognized as new variables. These 

explanations are typically very shallow (e.g., Keil, 1995; Luo et al., 2009; Wilson & Keil, 2000), 

but they still serve to integrate new variables with infants’ existing causal knowledge (by the same 

token, these explanations also serve to prevent infants from learning incorrect or spurious 

variables). In the case of the variable height in covering events, infants’ principle of persistence can 

provide a ready explanation for their observations: because an object continues to exist and retains 

its height when under a cover, it can become fully hidden only if its height is equal to, or shorter 

than, that of the cover.  

After a new variable has been identified (i.e. is added to the list of variables relevant to an 

event category), infants begin to routinely include information about the variable in their physical 

representations of events from the category. 

The EBL process helps make clear why infants learn separately about each event category. 

Infants do not compare arbitrary groups of events and look for invariants or critical variables that 

might explain similarities or differences among the events. The only situation that can trigger the 

identification of a variable is one where events with similar physical representations yield (as yet 

unpredicted or unexplained) contrastive outcomes. The learning process is thus highly constrained: 

it is designed to compare apples with apples, and not apples with rabbits or spoons. 

Teaching experiments. The EBL process predicts that infants who have not yet identified a 

variable in an event category should be able to identify the variable—even several months before 

they would normally do so—if exposed in the laboratory (or the home) to appropriate observations 

for the variable. And indeed, a number of “teaching” experiments have now provided evidence for 
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this prediction (e.g., Baillargeon, 2002; Wang & Baillargeon, 2008a; Wang & Kohne, 2007). 

For example, in a series of experiments, Wang and her colleagues “taught” 9-month-old 

infants the variable height in covering events (recall that this variable is typically not identified 

until about 12 months of age; e.g., Wang et al., 2005). Infants received three pairs of teaching 

trials. In each pair of trials, a tall and a short cover (that differed only in height) were lowered over 

a tall object; infants could see that the object remained partly visible beneath the short cover, but 

became fully hidden under the tall cover. Different covers were used in the three pairs of teaching 

trials. Next, the infants received either a violation-of-expectation task or an action task involving 

novel covers and objects. In the violation-of-expectation task, infants looked reliably longer (even 

after a 24-hour delay) when a tall object became fully hidden under a short as opposed to a tall 

cover (Wang & Baillargeon, 2008a). In the action task, infants searched correctly for a tall object 

under a tall as opposed to a short cover (Wang & Kohne, 2007).  

From an EBL perspective, these results are readily interpretable. During the teaching trials, 

(1) the infants noticed that events with similar physical representations led to contrastive outcomes; 

(2) they uncovered the specific height conditions that mapped onto these outcomes; and (3) they 

built an explanation for this condition-outcome regularity using their prior knowledge. Height was 

then added to the list of variables identified as relevant to covering events. When the infants next 

encountered covering events, they attended to the height information in the events, which enabled 

them to detect the violation in the violation-of-expectation task and to search correctly in the action 

task. 

Two additional results supported this analysis. First, infants failed at the violation-of-

expectation task if they received inappropriate teaching trials for which no explanation was 

possible (Wang & Baillargeon, 2008a; see also Newcombe, Sluzenski, & Huttenlocher, 2005). In 
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this experiment, false bottoms were inserted into the teaching covers, rendering them all 2.5 cm 

deep; when the covers were rotated forward to reveal their interiors, the infants could see that they 

were all shallow. Thus, in each pair of teaching trials, the infants still observed that the tall object 

became fully hidden under the tall cover and partly hidden under the short cover—but they could 

no longer build an explanation for this condition-outcome regularity, because the tall and short 

covers were now equally shallow (i.e. it did not make sense that the tall object became fully hidden 

under the tall but shallow covers). Second, infants failed at the action task if they received 

appropriate teaching trials but were tested with tubes instead of covers (Wang & Kohne, 2007). 

When the tops of the tall and short covers were removed to form tubes, infants searched for the tall 

object in either the tall or the short tube, suggesting that they had identified height as a variable 

relevant to covering events and did not generalize this variable to tube events. 

Together, the results summarized in this section suggest that infants can be taught a new 

variable in an event category through brief exposure to appropriate observations for the variable. 

Furthermore, infants who are taught a new variable immediately attend to information about the 

variable in situations presenting different stimuli and calling for different responses—but only 

when these situations involve events from the same category. The EBL process ensures broad, yet 

circumscribed, generalization: a variable identified in an event category is attended to in any event 

from the category—but only in events from the category. 

Part II: The Acquisition of Numerical Knowledge 

A representation of a given object is a representation of a unique individual. 

Representations of individuals are inputs into a variety of quantificational computations, such as 

which of two objects is bigger, which of two sets is more numerous, exactly how many objects are 

in a given container, and so on. We now turn to one type of quantification—by number. 
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As we will see, the development of number representations provides a case study of 

conceptual discontinuities: children must build representational resources qualitatively different 

from the initial state. In this way, number representations differ from object representations. Core 

cognition supports learning about objects, as Part I demonstrates, but this learning does not require 

forming object representations with very different properties from those available to young infants. 

I shall argue that core cognition contains two systems of representation with numerical content: 

analog magnitude representations of number and parallel individuation of small sets of entities 

in working-memory models. Both systems of representation continue to articulate thought 

throughout life and play crucial roles in later mathematical development. However, as I will 

show, the representations within them, alone, cannot express mathematical concepts such as 

integer or fraction. Thus, we need to understand how the latter concepts arise.   

This question—how humans create representational resources that are discontinuous with 

those that are the input to the learning processes that create them—is of great scientific interest. 

Moreover, this case study is important for social and educational reasons also. Preschoolers vary 

vastly in their mastery of counting and the simple arithmetical algorithms that depend upon 

counting (e.g., counting up to add), and this variability predicts academic success in elementary 

school more than does variability in reading readiness, vocabulary, or many other predictors 

(Duncan et al., 2007). It is important, then, to understand what is difficult about acquiring the 

earliest mathematical knowledge and to understand how this learning is achieved. In what 

follows, I will sketch answers to these questions, detailing the core cognition systems with 

numerical content, showing how they are discontinuous with the integers, and describe a learning 

process through which children navigate the conceptual achievement of creating a 

representational resource that is capable of expressing natural numbers. 
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Core Cognition System 1: Analog Magnitude Representations of Number 

Human adults, human infants, and non-human animals deploy a system of analog 

magnitude representations of number. Number is represented by a physical magnitude that is 

roughly proportional to the number of individuals in the set being enumerated. Figure 5 depicts 

an external analog magnitude representational system in which length represents number. A 

psychophysical signature of analog magnitude representations is that the discriminability of any 

two magnitudes depends on their ratio. That is, discriminability is in accordance with Weber’s 

law. This is a coding scheme widely used to represent dimensions of experience, such a 

loudness, time, brightness, length, size, intensity of pain, and many others. Animals and humans 

do not confuse these different dimensions of experience, but they use similar representational 

systems to encode them. 

Dehaene (1997) and Gallistel (1990) review the evidence for the long evolutionary 

history of analog magnitude number representations. Animals as disparate as pigeons, rats, and 

non-human primates all represent number, and number discriminability satisfies Weber’s law. In 

the past years, four different laboratories have provided unequivocal evidence that preverbal 

infants form analog magnitude representations of number as well (Brannon, 2002; Brannon, 

Abbot & Lutz, 2004; Lipon & Spelke, 2003, 2004; McCrink & Wynn, 2004; Wood & Spelke, 

2005; Xu & Spelke, 2000; Xu, Spelke & Goddard, 2005). The first paper in this flurry of studies 

was by Fei Xu and Elizabeth Spelke, who solved the problem of how to control for other 

possible bases of judgment (cumulative surface area, element size, density) in a large number 

habituation paradigm. The authors habituated 6-month-old infants either to displays containing 8 

dots, or to displays containing 16 dots. Possible confounds between number and other variables 

were controlled either by equating the two series of stimuli on those variables, or by making the 
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test displays equidistant from the habituation displays on them. Infants who were habituated to 8-

dot displays recovered interest when shown the novel 16-dot displays, while generalizing 

habituation to the novel 8-dot displays. Those habituated to 16-dot displays showed the reverse 

pattern. Subsequent studies duplicated this design (and the positive result) with 16-dot vs. 32 dot 

comparisons and with 4 dot vs. 8 dot comparisons.  

That analog magnitude representations support these discriminations is shown by the fact 

that success is a function of the ratio of the set sizes. In all of the above studies, in which 6-

month-old infants succeeded with a 2:1 ratio, they failed in comparisons that involved a 3:2 ratio 

(i.e., they failed to discriminate 8-dot from 12-dot arrays, 16-dot from 24-dot arrays, and 4-dot 

from 6-dot arrays). Also, these researchers have found that sensitivity improves by 9 months of 

age. Infants of this age succeed at 3:2 comparisons across a wide variety of absolute set sizes, but 

fail at 4:3 comparisons. Subsequent studies showed analog magnitude representations of number 

of different kinds of individuals (jumps, sounds), with the same profiles of sensitivity (Lipton & 

Spelke, 2004; Wood & Spelke, 2005).  

In all the studies presented so far, we can be confident it is number infants are responding 

to, because every other variable has been equated either across the habituation stimuli or across 

the test stimuli. Of course, if the analog magnitude representations underlying performance in 

these habituation studies are truly numerical representations, number relevant computations other 

than establishing numerical equivalence should be defined over them, and indeed this is so. 

Elizabeth Brannon (2002) showed that 11-month-old infants represent numerical order using 

analog magnitude representations of sets. Koleen McCrink and Karen Wynn showed that 9-

month-olds can manipulate sets of objects in the analog magnitude range to support addition, 

subtraction, and ratio computation (McCrink & Wynn, 2004). In sum, analog magnitude 
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representations of number are available at least by 6 months of age. Preverbal infants represent 

the approximate cardinal value of sets, and compute numerical equivalence, numerical order, 

addition, subtraction, and ratios over these representations.  

Core Cognition System 2: Parallel Individuation of Small Sets 

Science moves rapidly, and the infant studies reviewed above came relatively late in the 

history of studies designed to show that infants are sensitive to number. The first studies, some 

20 years earlier, concerned small sets—discriminations among sets of 1, 2 and 3 objects. These 

include many 2 vs. 3 habituation studies and Wynn’s 1 + 1 = 2 or 1 violation-of-expectation 

study (e.g., Antell & Keating, 1983; Starkey & Cooper, 1980, Wynn, 1992b). In the latter study, 

infants were shown a single object on a stage, which was then hidden by a screen. Next, another 

object was introduced behind the screen. Finally, the screen was lowered to reveal either one 

object or two objects. Infants’ attention was drawn to the unexpected outcome of a single object. 

Although some have suggested that analog magnitude number representations underlie success 

in these experiments (e.g., Dehaene, 1997), the evidence conclusively implicates a very different 

representational system (Feigenson & Carey, 2003, 2005; Feigenson, Carey, & Hauser, 2002; 

Scholl & Leslie, 1999; Simon, 1997; Uller, Carey, Huntley-Fenner, & Klatt, 1999). In this 

alternative representational system, number is only implicitly encoded; there are no symbols for 

number at all, not even analog magnitude ones. Instead, the representations include a symbol for 

each individual in an attended set. Thus, a set containing one apple might be represented: “O” 

(an iconic object file) or “apple” (a symbol for an individual of the kind apple) and a set 

containing two apples might be represented “O O” or “apple apple,” and so forth. These 

representations consist of one symbol (file) for each individual, and when the content of a 

symbol is a spatiotemporally determined object, it is an object file (Kahnemann et al., 1992). 
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Infants also create working-memory models of small sets of other types of individuals, such as 

sound bursts or events, and so I shall call the system of representation “parallel individuation” 

and the explicit symbols within it “individual files.”  

There are many reasons to favor individual file representations over analog magnitude 

representations as underlying performance in most of the infant small number studies (see Carey, 

2009, for a more thorough review). First, and most important, success on many spontaneous 

number representation tasks involving small sets do not show the Weber-fraction signature of 

analog magnitude representations; rather they show the set-size signature of individual file 

representations. Individuals in small sets (sets of 1, 2 or 3) can be represented, and sets outside of 

that limit cannot, even when the sets to be contrasted have the same Weber-fraction as those 

small sets where the infant succeeds at that age. This is the set size signature of individual file 

representations. 

Here I describe just one paradigm that elicits the set size signature of parallel 

individuation (see Carey, 2009, for others). An infant watches as each of two opaque containers, 

previously shown to be empty, is baited with a different number of graham crackers. For 

example, the experimenter might put two crackers in one container and three in the other. After 

placement, the parent allows the infant to crawl toward the containers. The dependent measure is 

which container the baby chooses. Ten- to 12-month-olds infants succeed at 1 vs. 2, 2 vs. 3, and 

1 vs. 3, but fail at 3 vs. 4, 2 vs. 4, and even 1 vs. 4 (Feigenson & Carey, 2005; Feigenson et al., 

2002). Although 1:4 is a more favorable ratio than 2:3, infants fail at 1 vs. 4 comparisons and 

succeed at 2 vs. 3. Note also that 5 crackers are involved in each choice, so the total length of 

time of placements is equated over these two comparisons. This is a striking result. Infants could 

succeed at 1 vs. 4 comparisons on many different bases: putting 4 crackers into a bucket takes 
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much longer, draws more attention to that bucket, and so on, yet infants are at chance. Although 

infants could solve this problem in many different ways, apparently they are attending to each 

cracker and creating a model of what’s in the container that contains one object-file for each 

cracker. As soon as one of the sets exceeds the limits on parallel individuation (apparently three 

at this age; see also the manual-choice paradigm in Feigenson & Carey, 2003, 2005), 

performance falls apart. This finding provides very strong evidence that parallel individuation 

underlies success on this task.   

The purpose of parallel individuation is to create working-memory models of small sets 

of individuals, in order to represent spatial, causal, and intentional relations among them. Unlike 

analog magnitude number representations, the parallel-individuation system is not a dedicated 

number representation system. Far from it! The symbols in the parallel-individuation system 

explicitly represent individuals. This ability is closely tied to knowledge development in the 

domain of physical reasoning (see first part of chapter): Only because the infant has core 

knowledge about persistence, he/she can be sure that the number of individuals perceived in a 

given event does not change magically. Combining this knowledge with the individuation 

system, it is possible to understand occlusion or containment relations involving more than one 

object. Imagine, for example, an occlusion event in which two boxes are placed behind a screen. 

Since both boxes are temporarily out of view, the infant needs to keep track of how many 

individuals are occluded, and to represent their relation (occlusion) to the screen. Figure 6 

depicts several different possible individual file representations of two boxes. In none of these 

alternative models is there a symbol that has the content “two;” rather the symbols in working 

memory represent the boxes. The whole model {box box} represents two boxes, of course, but 

only implicitly.  
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If parallel individuation models do not include symbols for number, why am I discussing 

these models in the present context? The answer is that they are shot through with numerical 

content, even though that numerical content is merely implicit in the computations that index and 

represent small sets, that govern the opening of new individual files, that update working-

memory models of sets as individuals are added or subtracted, and that compare sets on 

numerical criteria. The creation of a new individual file requires principles of individuation and 

numerical identity (see Part I. above; numerical identity means sameness in the sense of “same 

one”); models must keep track of whether this object (sound, event etc.), seen now, is the same 

one as that perceived before. The decision the system makes dictates whether an additional 

individual file is established, and this guarantees that a model of a set of three boxes will contain 

three box symbols. Computations of numerical identity are (as their name says) numerical 

computations. Also, the opening of a new individual file in the presence of other active files 

provides an implicit representation of the process of adding one to an array of individuals. 

Finally, working-memory models of two sets of individuals can be simultaneously maintained, 

and when individual-file models are compared on the basis of 1-1 correspondence, the 

computations over these symbols establish numerical equivalence and numerical order (for 

evidence of such computations, see Feigenson, 2005; Feigenson & Carey, 2003).  

Conceptual Discontinuity 

 In the adult representational system, verbal numerals represent positive integers: they are 

summary symbols that represent cardinal values of sets, and the system of verbal numerals 

satisfies Peano’s axioms. The central axiom is that each integer has a unique successor; for each 

integer, the next integer is n + 1. Implicitly or explicitly, the adult meanings of verbal numerals 

must be formulated over concepts such as exactly 1, plus, exact numerosity, set, successor. 
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Within this set of primitives, “four” can be defined in many different ways. Here are two: 1) four 

is the cardinal value of any set that can be put into 1-1 correspondence with {x, y, z, w}, where 

“x,” “y,” “z,” and “w” refer to numerically distinct individuals and {} denotes a set; and 2) four 

is the successor of three. These two ways of defining “four” are formally equivalent, in the sense 

that each definition determines exactly the same concept, namely, four. For “four” to have the 

same meaning as it does in the adult representational system, its meaning must be equivalent to 

both of these. Of course, it is an open question just what set of primitives underlies the child’s 

first successful representation of four.  Whatever it is, it must provide the expressive power of 

the primitives listed above.   

Neither of the core cognition systems discussed in the previous sections has the capacity 

to represent the integers. Parallel individuation includes no summary symbols for number at all, 

and has an upper limit of 3 or 4 on the size of sets it represents. Analog magnitude 

representations include summary symbols for cardinal values that are embedded within a system 

of arithmetical computations, but they represent only approximate cardinal values; there is no 

representation of exactly 1, and therefore no representation of + 1. Analog magnitude 

representations cannot even resolve the distinction between 10 and 11 (or any two successive 

integers beyond its discrimination capacity), and so cannot express the successor function. Thus, 

neither system can represent 10, let alone 342,689,455. This analysis makes precise the senses in 

which the concepts expressed by the verbal numeral list are qualitatively different from those 

representations that precede it. The numeral list has more expressive power—it can represent 

infinitely more concepts than can either of the core cognition systems with numerical content.  

Because the numeral list is qualitatively different from each of the core cognition systems 

with numerical content, it is indeed difficult to learn. American middle-class children learn to 
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recite the count list and to carry out the count routine in response to the probe “how many” 

shortly after their second birthday. They do not learn how counting represents number for 

another 1 ½ or 2 years, however. Young two-year-olds first assign a cardinal meaning to “one,” 

treating other numerals as equivalent plural markers that contrast in meaning with “one.” Some 7 

to 9 months later they assign cardinal meaning to “two,” but still take all other numerals to mean 

essential “some,” contrasting only with “one” and “two.” They then work out the cardinal 

meaning of “three” and then of “four.” This protracted period of development is called the 

“subset”-knower stage, for children have worked out cardinal meanings for only a subset of the 

numerals in their count list. So far, we still do not know exactly what representations underlie the 

meanings of “one” through “four” in the subset-knower stage. It seems likely, however, that they 

draw on the resources of parallel individuation. LeCorre and Carey (2007) proposed a system of 

“enriched parallel individuation” in which the child creates long-term memory models of sets of 

1 through 4 objects, mapping the verbal numerals to them using a rule that specifies that any set 

that can be put in 1-1 correspondence to the memory representation of a singleton set has “one” 

object, and similarly for sets of 2 through 4.  

 Many different tasks, which make totally different information-processing demands on 

the child, confirm that subset-knowers differ qualitatively from children who have worked out 

how counting represents number. Subset-knowers cannot create sets of sizes specified by their 

unknown numerals (Wynn, 1990, 1992b), cannot estimate the cardinal values of sets outside 

their known numeral range (Le Corre, Brannon, Van de Walle, & Carey, 2006), do not know 

what set-size is reached if 1 individual is added to a set labeled with a numeral outside their 

known numeral range (Sarnecka & Carey, 200), and so on. Children who succeed on one of 

these tasks succeed on all of them. Furthermore, a child diagnosed as a “one”-knower on one 



 27

task is also a “one”-knower on all of the others, ditto for “two”-knowers, “three”-knowers and 

“four”-knowers. 

Thus, learning how the verbal count list works is extremely difficult, the process 

unfolding over a two-year period. Adults who lack a count list (because their language does not 

contain one) demonstrate profound limitations in non-verbal numerical reasoning (Gordon, 2004; 

Pica, Lemer, Izard, & Dehaene, 2004; Spaepen, Coppola, Spelke, Carey, & Goldin-Meadow, 

2011), and preschoolers who do not fully master the numeral list representation of number are at 

a profound disadvantage in the elementary school curriculum. How is creating a representation 

of integers achieved?  

Acquiring Representations of Integers 

 Ultimately, learning requires adjusting expectations, representations, and actions to data. 

Abstractly, all of these learning mechanisms are variants of hypothesis-testing algorithms. The 

representations most consistent with the available data are strengthened; those hypotheses are 

accepted. However, in cases of developmental discontinuity, the learner does not initially have 

the representational resources to state the hypotheses that will be tested, to represent the 

variables that could be associated or could serve as an input to a Bayesian learning algorithm. 

Carey (2009) describes one learning mechanism that underlies conceptual discontinuities—

Quinian bootstrapping. Quinian bootstrapping can create new representational machinery, new 

concepts that articulate hypotheses previously unstatable.   

 In Quinian bootstrapping episodes, mental symbols are established that correspond to 

newly coined or newly learned explicit symbols. These are initially placeholders, getting 

whatever meaning they have from their interrelations with other explicit symbols. As is true of 

all word learning, newly learned symbols must necessarily be initially interpreted in terms of 
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concepts already available. But at the onset of a bootstrapping episode, these interpretations are 

only partial—the learner (child or scientist) does not yet have the capacity to formulate the 

concepts that the symbols will come to express.   

The bootstrapping process uses the set of interrelated symbols in the placeholder structure 

to model the phenomena in the domain, where the phenomena are represented in terms of 

whatever concepts the child or scientist has available. Both structures (the placeholder structure 

and the system of available concepts) provide constraints, some only implicit and instantiated in 

the computations defined over the representations. These constraints are respected as much as 

possible in the course of the modeling activities, which include analogy construction and 

monitoring, limiting case analyses, thought experiments, and inductive inference.  

Bootstrapping Representations of Natural Number  

In the case of the construction of the numeral list representation of the integers, the 

memorized count list is the placeholder structure. Its initial meaning is exhausted by the relation 

among the external symbols: they are stably ordered. “One, two, three, four…” initially has no 

more meaning for the child than “a, b, c, d…” The details of the subset-knower period suggest 

that the resources of parallel individuation, enriched by the machinery of linguistic set-based 

quantification, provide the partial meanings children assign to the placeholder structures that get 

the bootstrapping process off the ground. The meaning of the word “one” could be subserved by 

a mental model of a set of a single individual {i}, along with a procedure that determines that the 

word “one” can be applied to any set that can be put in 1-1 correspondence with this model. 

Similarly “two” is mapped onto a long-term memory model of a set of two individuals {j k}, 

along with a procedure that determines that the word “two” can be applied to any set that can be 

put in 1-1 correspondence with this model. And so on for “three” and “four.” This proposal 



 29

requires no mental machinery not shown to be in the repertoire of infants—parallel 

individuation, the capacity to compare models on the basis of 1-1 correspondence, and the set-

based quantificational machinery that underlies the singular/plural distinction and makes possible 

the representation of dual and trial markers. The work of the subset-knower period of numeral 

learning, which extends in English-learners between ages 2:0 and 3:6 or so, is the creation of the 

long-term memory models and computations for applying them that constitute the meanings of 

the first numerals the child assigns numerical meaning to.  

 Once these meanings are in place, and the child has independently memorized the 

placeholder count list and the counting routine, the bootstrapping proceeds as follows. The child 

notices the identity between the words “one,” “two,” “three,” and “four” that express the 

numerical meanings captured by the machinery of enriched parallel individuation and the first 

four words in the count list. The child must try to align these two independent structures. The 

critical analogy is between order on the list and order in a series of sets related by one additional 

individual. This analogy supports the induction that any two successive numerals will refer to 

sets such that the numeral farther in the list picks out a set that is 1 greater than that earlier in the 

list. 

 This proposal illustrates all of the components of bootstrapping processes: placeholder 

structures whose meaning is provided by relations among external symbols, partial 

interpretations in terms of available conceptual structures, modeling processes (in this case 

analogy), and an inductive leap. The greater representational power of the numeral list than that 

of any of the systems of core cognition from which it is built derives from combining distinct 

representational resources—a serially ordered list, the numerical content of parallel individuation 

(which is largely embodied in the computations carried out over sets represented in memory 
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models with one symbol for each individual in the set). The child creates symbols that express 

information that previously existed only as constraints on computations. Numerical content does 

not come from nowhere, but the process does not consist of defining “seven” in terms of mental 

symbols for number available to infants.   

  Carey (2009) illustrates how Quinian bootstrapping underlies conceptual discontinuities 

of two types: 1) those that involve the construction of representational resources with more 

expressive power such is the case in mastering the verbal integer list (sketched here) or the 

construction of rational number, and 2) episodes of theory changes involving successive 

conceptual systems that are incommensurable with each other. I draw my examples from early 

childhood through historical theory changes achieved by metaconceptually sophisticated 

scientists.   

 Perhaps you have noted a surprising fact about my account of the initial construction of 

integer representations. The process makes no use of one of the systems of core cognition with 

numerical content—the analog-magnitude (AM) system. This is so, and Carey (2009) 

summarizes the evidence for this surprising turn of events. However, another episode of Quinian 

bootstrapping achieves the integration of AM number representations with verbal numerals 

within 6 months of the child’s becoming a “cardinal principle-knower” (Le Corre & Carey, 

2007). This integration plays a very important role in subsequent arithmetic learning and 

numerical reasoning. Impairments in the AM system through brain damage lead to breakdowns 

of mathematical reasoning in adults, and are implicated in dyscalculia, a specific learning 

disability in mathematics (Butterworth, 1999; Dehaene, 1997). Two recent studies have shown 

that even within normally developing children, those with high resolution in their non-verbal AM 

system outperform those with low resolution on school arithmetic learning, beginning in 
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kindergarten (Gilmore, McCarthy & Spelke, 2010; Halberda, Mazzocco, and & Feigenson, 

2008). Thus, although Quinian bootstrapping is required to construct representations of integers, 

as well as fractions and other later developing mathematical concepts, the representations within 

core cognition play an important role in learning and reasoning throughout all of life. 

Conclusions: Core Cognition and Beyond 

 Systems of core cognition, such as the physical-reasoning system sketched in Part I, and 

the analog-magnitude and parallel-individuation systems sketched in Part II, are learning 

devices. They make it possible for infants to represent, and hence learn about, the objects in their 

world, and their spatial, causal, and quantitative relations to each other. As described in Part I, 

during infancy the PR system itself is enriched through explanation-based learning (EBL), as the 

child identifies new variables that are relevant to the predictions and explanations that constitute 

physical reasoning. The learning achieved in this way enriches the physical-reasoning system, 

but does not transcend it. It does not require creating new representational primitives; the 

variables identified are already available as input to the statistical processes that are part of EBL. 

EBL goes beyond mere statistical learning, for it is constrained by the causal/explanatory 

knowledge embedded in core cognition. Similarly, the quantitative machinery of the core 

systems of number representation makes it possible for the child to learn quantitative regularities 

about their world. 

 The conceptual representations that constitute systems of core cognition are part of the 

building blocks of later developing conceptual representations, even those that are qualitatively 

different from core cognition, expressing concepts not found within it. As sketched in Part II, the 

resources of parallel individuation provide a large part of the meanings assigned to verbal 

numerals during the subset-knower stage. However, they cannot provide the full meaning of 
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verbal numerals; parallel individuation cannot represent the meaning of “seven” or “ten,” for 

example, because working memory has a limit of three or four items during infancy and the 

preschool years. Quinian bootstrapping is required for the child to work out the trick of using 

serial order in the count list to determine the cardinal value of any numeral in the list, that is, to 

come to use counting to implement the successor function. And indeed, Sarnecka and Carey 

(2008) showed that children who have learned how counting represents number (children called 

“cardinal principle-knowers,” or “CP-knowers,” in the literature) differ from subset-knowers 

precisely in this way. Only CP-knowers can derive without counting that if you add one to a set 

containing 5 objects, you will have 6 objects.   

 Our goal in this chapter was two-fold. First, we provided worked examples of the type of 

research that reveals rich representational resources early in infancy, representational resources 

that provide building blocks for later conceptual understanding of the world, illustrating that 

these are dynamic learning mechanisms. Second, we illustrated the point that mastery of the 

adult conceptual repertoire often requires creating entirely new representational resources (in this 

case the integer-list representation of number). Through such constructions, children become 

able to think thoughts unavailable to infants or to any non-human animal. 
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Figure Captions 

Figure 1: Examples of basic persistence violations young infants can detect. Infants are surprised 
if a cover is lowered over an object, slid to the side, and then lifted to reveal no object (Wang et al., 
2005); if an object is placed inside a container which is then slid forward and to the side to reveal 
the object in the container’s original position (Hespos & Baillargeon, 2001b); if a screen rotates 
through the space occupied by a box in its path (Baillargeon, 1987); and if a cover is lowered over 
a closed object (e.g., a toy duck)  and then lifted to reveal an open object (e.g., a toy duck with a 
large hole in its midsection; Wu & Baillargeon, 2011). 
 
Figure 2: Some of the variables infants identify as they learn about containment events. By about 4 
months of age, infants are surprised if a wide object becomes fully hidden inside a narrow 
container (Wang et al., 2004). By about 7.5 months, infants are surprised if a tall object becomes 
almost fully hidden inside a short container (Hespos & Baillargeon, 2001a). By about 9.5 
months, infants are surprised if an object becomes hidden inside a transparent container (Luo & 
Baillargeon, 2011). Finally, by about 14.5 months, infants are surprised if an object changes 
color (e.g., from purple to yellow) when briefly lowered inside a container (too small to hide 
more than one object) (Setoh & Baillargeon, 2011). 
 
Figure 3: Schematic model of the physical-reasoning system: How infants represent and interpret 
the structural and the variable information about a physical event. 
 
Figure 4: Décalages in infants’ identification of the variable height across different event 
categories. By about 3.5 months of age, infants are surprised if a tall object remains fully hidden 
when passing behind an occluder with a short midsection (Baillargeon & DeVos, 1991). By about 
7.5 months, infants are surprised if a tall object becomes almost fully hidden inside a short 
container (Hespos & Baillargeon, 2001a). By about 12 months, infants are surprised if a tall object 
becomes fully hidden under a short cover (Wang et al., 2005). Finally, by about 14.5 months, 
infants are surprised if a tall object becomes fully hidden inside a short tube (Wang et al., 2005). In 
the latter two cases, infants are first allowed to inspect the cover or tube in a brief orientation 
procedure.  
 
Figure 5: External analog magnitude representation of number in which number is represented by 
line length. 
 
Figure 6: Two versions of the memory structures that might subserve parallel individuation of 
small sets of objects. In one, each object is represented by an object-file that abstracts away from 
specific features (OBJ). In the other, each object is represented by an object-file on which shape, 
color, texture and spatial extent features have been bound. 
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Figure 5 
 

Number                     Analog Magnitude Representation 

1                            __ 
2   ____ 
3   ______ 
4   ________ 
7   ______________ 
8   ________________ 
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