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Introduction

Evaluating metamnemonic accuracy is an inherently difficult enterprise as the
theorist must contend with all of the usual variability inherent to normal memory
behavior and additionally consider other sources that are relevant only to the met-
amnemonic aspects of the task. This chapter reviews the arguments motivating the
use of the Goodman-Kruskal gamma coefficient y in assessing metamnemonic accu-
racy and pits that statistic against a distance-based metric d, derived from signal
detection theory (Green & Swets, 1966). We evaluate the question of which potential
- measures of metamnemonic accuracy have the most desirable measurement char-
acteristics and which measures support the types of inference that researchers com-
monly wish to draw. In doing so, we attempt to make general arguments without
providing a detailed account of the underlying mathematics or statistics, but we do
place appropriate references should those interested desire a more technical treat-
ment of the issues that arise.

- T. O. Nelson was a pioneer of methodologies in the field and a consistent devotee of
- increasing analytical sophistication and rigorous measurement (see, e.g., Gonzalez &
Nelson, 1996; Nelson, 1984). Although not all of the conclusions reached in this chap-
ter are the same as those reached in Nelson’s (1984) classic article, we would hope
that the work nonetheless is considered a testament to Nelson’s legacy of meticulous
attention to the quantitative foundations of metacognitive research.

Metamemory Experiments

To begin, let us briefly review the basic substance of metamemory experiments, the
data table, and the traditional analytic approaches. Be forewarned that the field is
diverse and complicated, and any general portrayal of a metamemory experiment is
bound to be a caricature at best. We do not mean to trivialize the many varieties of
experiment that do not fit into the mold, but many, if not most, experiments share
certain common characteristics:
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1. A manipulation of study or judgment conditions. Many experiments evaluate
metamemory in the context of a manipulation of memory. This manipulation
may consist of an orienting instruction (e.g., generating vs. reading; Begg, Vinski,
Frankovich, & Holgate, 1991); an ecological (e.g., altitude; Nelson et al., 1990) or
pharmacological (e.g., benzodiazepines; Mintzer & Griffiths, 2005) intervention;
use of item repetition (Koriat, Sheffer, & Ma’ayan, 2002), list position (e.g., recency
vs. primacy; Benjamin, Bjork, & Schwartz, 1998), interference (Diaz & Benjamin,

1 2008; Maki, 1999; Metcalfe, Schwartz, & Joaquim, 1993), or scheduling (e.g., spac-
\ ing between repetitions; Benjamin & Bird, 2006; Dunlosky & Nelson, 1992; Simon
\ & Bjork, 2001; Son, 2004); or varying item characteristics (e.g., high- versus low-fre-
| quency words; Benjamin, 2003). The intent is to induce a difference in performance
between conditions (although this is not necessarily the case), in order to evaluate
the degree to which metamnemonic judgments reflect that difference. In other cases,
i populations of subjects (e.g., older and younger [Hertzog, Kidder, Powell-Moman, &
| Dunlosky, 2002]; memory impaired and memory intact [Janowsky, Shimamura, &
Squire, 1989]), rather than items are compared. Alternatively, the study conditions
I may be held constant but the conditions of the metacognitive evaluation may be
4 manipulated. Such manipulations might vary, for example, the timing (Nelson &
l Dunlosky, 1991) or the speed (Benjamin, 2005; Reder, 1987) of the judgment. Note
\ that this aspect of the procedure is often, but not always, experimental: Items are
randomly assigned to conditions, and the full force of experimental paradigms can
be brought to bear on this part of the design.
2. A measure of metamemory. At some point prior to (Underwood, 1966), during, or
after study (Arbuckle & Cuddy, 1969; Groninger, 1979), or even after testing (as in,
e.g., feelings of knowing [Hart, 1965] or confidence in answers [Chandler, 1994]),
subjects are asked to make a deliberate judgment about their memory performance.
Mostly, those judgments are made on an item-by-item basis, but they may be for a
‘ group of items or for the entire set of items in the experiment. Alternatively, subjects
\ may be asked to make a decision about restudying items (Benjamin & Bird, 2006;
Son, 2004; Thiede & Dunlosky, 1999), and it is presumed that such decisions implic-
itly reflect their judgments of memory (Finn & Metcalfe, 2006). These judgments
‘ may take place within a context that allows an interrogation of memory, such as
‘ when only the cue term of a cue—target pair is used to elicit the judgment (Dunlosky
& Nelson, 1992), or one in which such interrogation is difficult (e.g., if the entire cue-
target pair is presented or if responses are speeded; Benjamin, 2005; Reder, 1987).
‘ 3. A test of memory. After some delay following the judgment procedure, memory is que-
| ried. It is rare (cf. Nelson, Gerler, & Narens, 1984) to employ an experimental manipu-
lation at this point because it is uninformative to examine the effects of a manipulation
| on judgments that precede that manipulation. However, aspects of the test, particu-
larly its relative difficulty, may play a role in evaluating metamnemonic accuracy.

Evaluating Metamemory Accuracy

Now, consider the fundamental question of metamemory experiments: How well
does metamemory reflect memory? Metamemory is considered to be accurate when
\ subjects show some sort of a calibrated assessment of their memory’s failings and
\ successes. Bear in mind that a useful measure of metamnemonic accuracy should be
J independent of actual levels of memory performance.
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Does metamemory accurately reflect memory?

Do they change by
Are there co paﬂ'able intervals?

Does the change differ between conditjons?
Is there an interaction with cond ?

JL

Does the change differ between groups?
Is there an interaction with group?

Figure 1 A taxonomy of questions about metamnemonic accuracy.

Figure 1 relates this fundamental question to the typical paradigm used to study
metamemory and provides a rough taxonomy of questions ranked in order of
measurement complexity. In rare circumstances, it might be informative to assess
metamemory with reference to an absolute standard — for example, to evaluate
whether a patient group reveals above-chance metamnemonic accuracy — but, more
commonly, metamemory is tracked as a function of an experimental manipulation.

Ordinal Evaluation of the Experimental Factor

One straightforward analytic option is to jointly evaluate the effect of that manipu-
lation on average memory performance and average metamemory judgments. Such
paradigms are particularly powerful demonstrations when the effects of the variable
are opposite for memory and metamemory (e.g., Benjamin, 2003; Benjamin et al.,
1998; Diaz & Benjamin, 2008; Kelley & Lindsay, 1993; Metcalfe et al., 1993) but are
limited by the inability to make interval-level comparisons between metamnemonic
and mnemonic measures. This question is portrayed on the first sublevel of possible
research questions in the hierarchy in Figure 1 to emphasize the minimal sophisti-
cation it requires on the part of the measurement scales: All that must be assumed
is that higher scores indicate superior memory performance and a prediction of
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superior memory performance compared to lower scores. More complex demands
are placed on those scales by the three questions that lie below this level.

Relationships Between Judgments and Performance

More often, the relationship between metamemory judgments and memory perfor-
mance is assessed as a function of the manipulation. This relationship can be summa-
rized in numerous ways, but the two most commonly used approaches are calibration
curves, in which mean performance and mean judgments collapsed across a subset
of items and conditions are jointly plotted, and correlations, in which the association
between performance and judgments is evaluated. Calibration curves are used as a
metric for absolute metamnemonic accuracy, or the degree to which mean rating
values accurately estimate mean performance. Consequently, such analyses are only
possible when ratings are made on scales isomorphic to probability scales and have
certain interpretive (Gigerenzer, Hoffrage, & Kleinbolting, 1991) and analytic (Ereyv,
Wallsten, & Budescu, 1994) difficulties (see also Keren, 1991). Such analyses are not
the focus of this chapter and are not considered further here.

Correlational Measures

In contrast to absolute accuracy, relative metamnemonic accuracy is measured by
the within-subject correlation of performance and predictions. Again, this assess-
ment is usually made across conditions of a manipulation of memory. A good exam-
ple is the delayed-judgment-of-learning effect (Nelson & Dunlosky, 1991), which is
arguably the most robust and important effect in the metamemory literature. Nelson
and Dunlosky (1991) showed that judgments about future recallability were much
more highly correlated with later performance when a filled interval was interposed
between study and judgments.

The consensual analytic tool for such paradigms is y (Goodman & Kruskal, 1954,
1959), owing mainly to an influential article by Nelson (1984; see also Gonzalez &
Nelson, 1996), in which y was shown to be superior to a number of other measures
of association, as well as to scores based on conditional probabilities and differences
thereof (Hart, 1965), in terms of permitting a particular probabilistic interpretation
of scores: What is the probability that Item X is remembered and Item Y is not given
that Item X received a higher metacognitive judgment than Y?' Here, we reconsider
that conclusion from the perspective of the three research questions at the bottom
of Figure 1. For these cases, it is necessary to be in possession of data with relatively
advanced metric qualities. To claim, for example, that a manipulation affects memory
more than metamemory or that two groups who differ in baseline metamemory skills
gain a differential amount from an intervention requires a measure that affords inter-
val-level interpretation. The remainder of this chapter evaluates several candidate
statistics for such qualities and reviews a solution based on the isosensitivity func-
tion of signal detection theory (SDT; e.g., Green & Swets, 1966; Peterson, Birdsall, &
Fox, 1954; Swets, 1986a, 1986b). Nelson (1986, 1987) considered this alternative and
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fejected it, but we take a closer look at the debate, provide some supportive data for
the SDT view with reanalyses of recent work, and demonstrate its metric qualities
With simulated data sets. In addition, we show that a relatively simple transforma-
ion of y improves its metric qualities and makes it comparable in certain ways to the
easure derived from SDT.

Gamma and Its Use in Metamemory Research

dere, five major arguments in support of the use of y are considered. These arguments
erive primarily from the early work of Goodman and Kruskal (1959) as well as the
Sychologically motivated papers by Nelson (1984) and Gonzalez and Nelson (1996).

. L yis easily generalized from the 2 x 2 case (in which it is equivalent to Q; Yule, 1912)
to the n x m case. Thus, y is appropriate when there are greater than two choices on
- the judgment scale.

2. Because there is no evidence concerning the form of the probability distributions
relating future memory status (remembered or not) to the underlying judgment
dimension, the machinery of SDT is unwarranted, and a purely nonparametric
measure such as y is preferred.

3. To the degree that y is an efficient estimator, it should have desirably low error vari-
ance relative to other estimators. That quality increases the power to detect differ-
ences between conditions.

4. The y coefficient bears a linear relationship to the probabilistic construal mentioned
and thus has a transparent psychological interpretation in terms of subject perfor-
- mance (Nelson, 1984).

5. The y coefficient is independent of criterion test performance, unlike other measures.

‘We shall consider each of these claims and revisit the adequacy of y in light of the
estions posed in Figure 1. Bear in mind that Nelson (1984) formulated these claims
L the context of a search for a superior measure of feeling-of-knowing accuracy;
fre, we are more concerned with measuring metamemory more generally, and the
totype case we have in mind is in fact more like a typical judgment-of-learning
L) paradigm. It is not evident that this difference matters much.

eneralizability Across Experimental Designs

is true that many alternative measures of association, such as phi, do not general-
¢ coherently beyond the 2 x 2 case, and that such a limitation is undesirable for
€asuring metamnemonic accuracy. The y coefficient is easily generalized to tables
farbitrary size, which makes it clearly superior in experiments in which predictions
e more finely grained than binary ones. However, it is not clear that it is much

ble; indeed, only the rare metamemory experiment has a memory outcome with
ore detail than “remembered” or “not remembered.” In any case, the advantage of a
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measure that handles designs of n x m (n,m > 2) over one that effectively treats 2 x m
(m > 2) designs is likely minimal and may be offset by other relevant factors.

Signal Detection Theory Is Unsupported as an Analytic Tool

Unfortunately, it is not possible to do justice to the application of SDT to psychology
in the limited space here (for further technical discussions, see Macmillan & Creel-
man, 2005; Wickens, 2001). Fundamentally, SDT relates performance in choice tasks
to probability distributions of evidence conditionalized on the to-be-discriminated
factor and decision criteria that partition that space into responses. Given the incred-
ibly wide applicability of SDT to psychological tasks of detection and discrimination
in perception (Swets, Tanner, & Birdsall, 1955), memory (Banks, 1970; Egan, 1958),
and forecasting (Mason, 1982) and the impressive consistency of support across that
wide array of tasks (Swets, 1986a), it certainly deserves a closer look in the case of
metamemory. We do so and consider anew the unsupported assumptions pointed
out by Nelson (1984, 1987).

Efficiency and Consistency

Measures derived from SDT have either lower error variance or usually lower error
variance (that is, lower through a wide range of possible values) than does y (Swets,
1986b, pp. 113-114). In addition, it has been noted that y reveals disturbingly low lev-
els of stability across alternative test forms, test halves, and even odd- and even-num-
bered items (Thompson & Mason, 1996; see also Nelson, 1988). Such low reliability
calls into question experiments that fail to find differences between conditions, of
which there are many.

A related question is whether y is a consistent estimator — that is, whether the
rate at which it approaches its asymptotic value with increasing sample size is as high
as possible. Although we do not consider this property in detail, it is worth making
note of one critical property of y that is likely to influence consistency. As noted by
Schwartz and Metcalfe (1994, Table 5.2), the fact that y treats data purely ordinally
— in terms of pairwise ranks — leads to both its desirable properties and perhaps
some undesirable ones. A subject who assigns two item ratings of 5% and 95% prob-
ability of future recall is likely not making the same claim if the individual assigns
those item ratings of 49% and 50%; yet, y treats the cases equivalently. This property
of y is desirable only insofar as the prediction data are unlikely to have interval-level
properties. Yet it discards vast amounts of information in treating them as purely
ordinal. We will show that this treatment is overly conservative, and that relaxing
that assumption only slightly affords the use of measures that may be more efficient
and more consistent.
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Psychological Interpretability

Itis on the issue of psychological interpretability that much of our discussion cen-
ters. Nelson’s (1984) argument about the clear relation between y and the conditional
judgment probability mentioned is a strong one, and we have no contention with the
claim. However, we do question whether such a probabilistic interpretation affords
the types of research questions and interpretations listed as the bottom three in
Figure 1. That is, does the use of y support interval-level analyses and conclusions?
e answer is almost certainly no. At the very least, y belongs to a class of measures
(along with probability and other correlation measures) that are bounded on both
ends. Measurement error leads to skewed sampling distributions at the margins of
bounded scales and renders interpretation of intervals, and consequently interac-
tions, difficult® (Nesselroade, Stigler, & Baltes, 1980; Willett, 1988). Schwartz and
Metcalfe (1994) noted this problem in the context of between-group comparisons.
- To be sure, this criticism is appropriately directed at a very wide range of analy-
ses in the psychological literature (Cronbach & Furby, 1970), and we do not wish to
imply any particular fault of researchers in metacognition. The important point is
that equal intervals across a scale should not be assumed when treating psychologi-
¢l data, a point emphasized by Tom Nelson throughout much of his work. It is the
burden of the theorizer to support such a claim prior to employing analyses that pre-
sume such measurement characteristics. To preview, it is on this very point that the
application of SDT is most desirable. Measures of accuracy derived from SDT have

terpretations rooted in geometry and are straightforwardly defensible as having
interval characteristics.

Invariance With Criterion Test Performance

Nelson (1984, Figure 1) illustrated that > in contrast with a difference of conditional
probabilities (Hart, 1965), was invariant with criterion test performance. However,
Schwartz and Metcalfe (1994) noted that y was not independent of the number of test
alternatives in forced-choice recognition. Although we shall not consider the issue
further here, it should be noted that Y may, under some conditions, vary with aspects
of the task irrelevant to measurement of metamemory.

ignal Detection Theory and Metamemory Tasks

SDT provides an alternative solution to the question of how to summarize perfor-
mance in contingency tables. The statistics of SDT are derived from a simple model
of decision making under stimulus uncertainly, characterized by four basic assump-
tions (adopted from Benjamin, Diaz, & Wee, 2008):

L. Events are individual enumerable trials on which a signal is presented or not.

- 2. Astrength value characterizes the evidence for the presence of the signal on a given
. trial.
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3. Random variables characterize the probability distributions of strength values for
signal-present and signal-absent events.

4. A scalar criterion serves to map the continuous strength variable onto a binary (or
n-ary) decision variable.

For a metamemory task, it is assumed that stimuli that are later to be remembered
(TBR) enjoy greater values of memory strength than stimuli that are later to be forgot-
ten (TBF). The “memory strength” variable is really a variable by proxy; in fact, one
of the great benefits of SDT is that, although an evidence axis needs to be postulated,
it need not be identified. It simply reflects the evidence that can be gleaned from a
stimulus regarding its memorability or, in this case, its perceived memorability.

To the degree that subjects can perform such a discrimination accurately — that
is, if they can claim which items they will remember and which they will not at a
rate greater than chance — then the distribution for TBR items must have generally
higher values of memory strength than the distribution for TBF items. This is shown
in the top panel of Figure 2. Evidence values (e, and e,) are experienced by the subject
and compared to a criterion C; in the case illustrated in Figure 2, the subject would
reject the item yielding e, evidence and endorse the item yielding e, evidence.

SDT has been used primarily as a tool to aid in the separation of decision com-
ponents of choice tasks from the actual sensitivity of the judgment. Sensitivity is a
function of the overlap of the inferred probability distributions, and the placement of
decision criterion (or criteria) represents the decision aspect of the task. As a theoreti-
cal device, isosensitivity functions can be plotted that relate the probability of a meta-
cognitive hit (claiming that I will remember an item that will in fact be remembered
later) to the probability of a metacognitive false alarm (claiming that I will remember
an item that will not be remembered later). This function is a plot of how those values
vary jointly as the criterion moves from a lenient position to a conservative one (or
vice-versa). The bottom left panel for Figure 2 shows the isosensitivity function corre-
sponding to the distributions in the top part of the figure in probability coordinates;
the bottom right panel shows that same function in normal-deviate coordinates.

Empirical isosensitivity functions are useful in part because they allow one to
evaluate whether the assumptions about the shapes of the probability distributions
are valid. Specifically, normal probability distributions yield perfectly linear isosen-
sitivity contours in normal-deviate coordinates, as shown in the bottom right panel
of Figure 2 (Green & Swets, 1966). It has been claimed that the linearity of such func-
tions is not a strong test of those assumptions because many different probability
functions yield approximately linear forms (Lockhart & Murdock, 1970; Nelson,
1987). This is only partially true. Because the isosensitivity function is constrained
to be monotonically increasing, there are many distributional forms that yield func-
tions for which a large proportion of the variance (even above 95% in some cases)
is linear. However, all forms except the normal distribution will lead to a nonlinear
component as well. Consequently, an appropriate test is whether the addition of a
nonlinear component to a linear regression model increases the quality of the fit.
We present such a test and show that, contrary to the admonitions of Nelson (1987),
SDT provides a viable model of the information representation and decision-making
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Figure 2 The signal detection theoretic framework and the isosensitivity function. Top
panel: Normal probability distributions of strength for eventually forgotten (left) and remem-

for future memorability. C indicates the location of a decision criterion. Bottom panels: Iso-
' sensitivity functions corresponding to the distributions shown in the top panel in probability
coordinates (left) and normal-deviate coordinates (right).

process underlying metacognitive judgments. Let us first turn to the nitty-gritty of
computing an isosensitivity function for metamemory data.

The Detection-Theoretic Analysis of a Metamemory Task

SDT analysis requires that our data be tabulated in the form of a contingency table.
I‘Tnis requirement is straightforward in the case of a metamemory task, in large part
because such a formulation is consistent with the computation of y. Such a table is
'shown in the top right of Figure 3. Note that the data must be in a 2 x m table in
‘which there are m rating classes and two potential outcomes — presumably, remem-
‘bered and forgotten. In the present example, there are six rating classes, with 1 indi-
cating that the subject is very confident that they will nof remember the stimulus and
6 indicating that they are very confident that they will remember it.
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Figure 3 An example of how to estimate the isosensitivity function from data from a
metamemory experiment.

Several additional transformations are necessary and are shown vertically on the
right of Figure 3. First, frequencies are converted to proportions of each outcome
class (shown in the second table on the right side of Figure 3). Those proportions are
cumulated from right to left across the rating scale, such that the sixth cell in a row
contains the proportion of 6 responses, the fifth cell in a row contains the propor-
tion of a 5 or a 6 response, and so on. These cumulative proportions are treated as
increasingly liberal response criteria, and a joint plot of those values yields the iso-
sensitivity function shown in the top left of Figure 3. Note that the most liberal point
is always going to be (1,1) since it reflects the cumulative probability of any response.
The final data table shows the cumulative proportions after an inverse-cumulative
normal transformation (i.e., changing from proportions to z scores) and yields the
normal-deviate isosensitivity plot shown in the bottom left.

The sensitivity of the ratings can be understood as either the degree to which the
theoretical distributions overlap, as mentioned, or as the distance of the isosensitivity
function from chance performance, indicated in the top function as the major diago-
nal and in the bottom function as an unshown linear contour passing through the
scale origin. We introduce one measure d, that corresponds to the shortest possible
distance from the origin (scaled by V2) to the isosensitivity function in the bottom
plot. That value can be easily computed:
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N2y
V1+m®

d, =

in which y, and m represent the y-intercept and slope, respectively, of the normal-
“deviate isosensitivity function. The d, can be conceptualized in terms of the geom-
etry of the isosensitivity function, as defined above, or in terms of the distributional
formulation in the top part of Figure 2; in that case, d, is the distance between the
means of the normal distributions divided by the root-mean-square average of their
standard deviations.

Using d,, to measure metamemory accuracy is a novel suggestion to our knowledge.
- There was some consideration of whether d” — a similar but not equivalent measure
— is an appropriate score to measure metamnemonic accuracy (Nelson, 1984, 1987;
Wellman, 1977). The d” measures the distance between the probability distributions
scaled by a common standard deviation. The assumption of common variance has
proven incorrect in most substantive domains (Swets, 1986a) but is nonetheless com-
monly used because it can be computed on the ubiquitous 2 x 2 data table. At least
a2 x 3 table is required for d,, and its fit is only testable with a minimum of four
columns. Such a characteristic is hardly a limitation in metamemory research, how-
ever; it simply implies that subjects’ rating scale must contain more than two discrete
choices. In fact, it is more commonly necessary to construct judgment quantiles from
prediction data to reduce the number of points in isosensitivity space (and thus also
increase the precision of the estimates). In the next section, we directly address the
question of whether the SDT model of metamnemonic judgment is an accurate one.

Analyses of Metamemory Tasks

Nelson (1984) wrote, “Unfortunately, there is no evidence in the feeling-of-knowing
literature ... to justify the assumption that the underlying distributions are normal”
(p. 121). In this section, we present such evidence. We consider two data sets. The first
is from our recent work (Diaz & Benjamin, 2008), for which the prediction task is on
a scale of 0 to 100, and the criterion task is cued recall. For the second data set (Ben-
“jamin, 2003), the prediction is on a 1-to-9 scale, and the criterion tasks are both rec-
ognition and free recall. We have deliberately chosen tasks that differ substantively in
order to demonstrate the robustness of the analysis.

Analysis of Diaz and Benjamin (2008)

- These experiments involved multiple study-test trials with paired-associate terms,
over which proactive interference was introduced by reusing cue terms. One condi-
tion is reported here in which there were 20 items per studied list (henceforth, the
difficult condition), and another condition is reported in which there were 10 or 16
items per list (the easy condition).?
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TABLE 1 An Example of How to Compute Quantile Frequencies
Under Conditions With Tied Boundary Scores

Data Table
JOL 0 20 40 40 40
Recall 0 1 0 1 1
Frequency Table
Q1 Q2 Total
Remembered 1+0.5(2/3)=1.33 2.5(2/3) = 1.67 3
Forgotten 1+0.5(1/3)=1.17 2.5(1/3) = 0.83 2
Total 25 2.5 5

Because the prediction data were on a 0-to-100 scale, the first step was to convert |
those data to quantile form. To get a reasonable estimate of the isosensitivity func-

tion, there should be a sufficient number of bins to estimate the shape of the function
adequately (at least four and ideally five or more) and a sufficient number of observa-

tions to avoid very low frequencies in any particular bin. A good rule of thumb is to |

have subjects try to distribute their judgments more or less evenly across the rating
scale and to try to have no fewer than 20 of each rating. In this case, the number of
discrete ratings was actually greater than the number of observations, so it was nec-
essary to convert the data to quantiles.

For each subject, individual matrices of performance and JOLs were sorted by JOL
magnitude and divided into six bins. The goal was to have each bin contain an equal

number of items and to partition those items by whether they were eventually recalled

(or recognized). Because the total number of items was not always divisible by six, the
column totals were not always integers. In addition, because of numerous ties on the

JOL variable, some interpolation was necessary. Table 1 gives a simple example of |

how this was done. In this example, there are five total items to be divided into two
bins. Thus, the marginal total for each (column) quantile bin must be 2.5. Because
there are three remembered and two forgotten items, the row totals are also fixed.

In the first quantile, there is one item that is remembered, one that is forgotten
(those values are in bold in the table) and half of an item remaining with a value that
must be interpolated from the remaining tied scores. Because only one of those three
tied scores represents a forgotten item, one third of the remaining half item is allo-
cated to the forgotten bin and two thirds are allocated to the remembered bin. Simi-
larly, for the second quantile, all of the members are tied and lie on the bin boundary.
Thus, of the 2.5 total items, one third is allocated to the forgotten bin and two thirds
to the remembered bin.

Parameters for the SDT model were estimated individually for each subject using
maximum likelihood estimation (Ogilvie & Creelman, 1968). Linear regression
accounted for a mean of 97.2% and 96.4% of the individual subject’s data in the easy
and difficult conditions, respectively. The addition of a quadratic term increased the
mean variance accounted for to 99.1% and 98.7%, respectively; this increase was
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Figure 4 Isosensitivity functions in probability (top) and normal-deviate (bottom) coordi-
- nates for the difficult (left) and easy (right) conditions drawn from Diaz and Benjamin (2008).

 reliable in only 2% of the subjects in each condition.* This value is lower than the
chance probability of 5%. In addition, the mean value of the quadratic term in the full
model was not reliably different from 0 in either condition. These findings suggest
 that the assumption of normally distributed evidence holds in these data.

Average isosensitivity functions based on the mean parameters of the linear model
- across subjects are shown in Figure 4. These data reveal that metamemory perfor-
- mance is in fact superior in the easy condition. The d, values shown in Figure 4 are
 for the average functions shown in the figure; mean d, values based on individual
 subject performance were similar but revealed an even larger difference (d, [easy]
= 0.51, d, [difficult] = 0.25). The difference between conditions was reliable (¢ [169]
= 4.23) and confirmed a similar result obtained using y (Yeasy = 0-32, Yaigricur = 0.19;
t [169] = 3.49), but with a larger effect size.
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Analysis of Benjamin (2003)

In this experiment (Benjamin, 2003, Experiment 3), subjects made predictions of
recognition performance on a 1-to-9 scale, took a test of recognition followed by an
additional prediction phase for a test of recall, and then took the recall test. Unlike
the case just described, frequencies did not need to be interpolated. However, because
performance was so high on the recognition test, there were a number of subjects for
whom the fit of isosensitivity functions could not be evaluated; those subjects were
dropped from the analysis of the shape of the function.

Linear regression accounted for a mean of 84.7% and 85.8% of the individual sub-
ject’s data in the recognition and recall conditions, respectively. Quadratic regression
increased the mean fit to 89.3% and 93.6%, respectively. Despite the larger increase
than in the previous analysis, the magnitude of the increase was reliable in only 3% of
the cases. As before, the mean value of the quadratic term in the full model was not
reliably different from 0 in either condition. The assumption of normally distributed
evidence was thus supported in this data set as well.

Mean values of d, were 0.44 and 0.51 for recognition and recall, respectively. Cor-
responding values of y were 0.29 and 0.38. Neither difference was reliable, but all
values were reliably different from 0.

Scale Characteristics of d, and y

The analyses reported in the previous section indicate that the application of the
machinery of SDT to the traditional metamemory task is valid and thus permits the
use of d, as a measure of metamemory performance. Because d,, is rooted firmly in
the geometry of the isosensitivity function, it has interpretive value as a measure of
distance and all of the advantages that such an interpretation affords: equal intervals
across the scale range and a meaningful 0. Like actual distance, d, is bounded only
at 0 and e.®
Let us now return to the question of the metric qualities of y. We claimed that y
could not have interval-level properties because of its inherent boundaries. In the
next section, we simulate data based on the confirmed assumptions that were tested
and evaluate exactly how well y performs and whether simple transformations are
possible that increase its metric qualities. The strategy we use to evaluate y and other
measures is to generate data based on a population profile with a known metric space
and then test the ability of y, d,, and other measures to recover that metric space.
We use the assumption of normal probability distributions to generate simulated
metamemory strengths for recalled and unrecalled items and apply different mea-
sures of metamemory accuracy to assess performance in those simulated data.

Simulations

For each of 1,000 sim-subjects, memory performance on 100 test trials was simulated
by randomly sampling profiles from a normal distribution with a mean of 50 and
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gure 5 [Estimates of r (the Pearson correlation coefficient), D (the Hart difference score),
Y (the Goodman-Kruskal gamma correlation), and d, (a distance measure based on signal
detection theory) as a function of the distance between generating distributions. The degree
oflinearity of the function reveals the potential of the statistic for use in drawing interval-level
inferences on data. Left panel: Signal variability = 1. Right panel: Signal variability = 1.5.

variance of 10. The profile represented the number of items recalled out of 100 for
each sim-subject. Then, for each unremembered item, an evidence score was drawn
from a normal distribution with mean 0 and variance 1, and for each remembered
item an evidence score was drawn from a normal distribution with mean d and vari-
ance s. These scores were transformed into confidence ratings by relation to three
criteria that were set for most simulations to lie at the mean of the noise distribution,
the mean of the signal distribution, and halfway between the two. This transforma-
tion produced a matrix of memory scores (0 or 1) and confidence ratings (1, 2, 3, or
4) that was used to estimate the values of several candidate metamemory statistics,
including vy, d,, r (the Pearson correlation coefficient), and D (the difference in mean
judgments between recalled and unrecalled items; Hart, 1965).

Results

e first important set of results can be seen in Figure 5, in which each statistic is
plotted as a function of d (with s = 1 in the left panel and s = 1.5 in the right panel).
Ihe major diagonal indicates perfect recovery of the parameter d. Several general pat-
terns are evident. First, the correlation measures suffer, as expected, near the bound-
of the scale and exhibit a decided nonlinearity. Second, differential variability
n the strength distributions (shown in the right portion of the figure) decreases the
overall fit of all measures and results in estimates that are biased to be low. Because

ur estimates of the variability of the signal distribution were in fact quite close to 1,
e consider more closely here the case in the left panel.
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Because the two correlation statistics  and y have probabilistic interpretations,
they should not be expected to fall on the major diagonal. However, the important
aspect of the failure of these measures is the clear nonlinearity. If a statistic is a linear
transformation of the population value, then the estimator can be claimed to have
interval-level properties. As noted, the boundary on r and y introduce nonlinearity;
consequently, a linear fit accounts for only 91% and 85% of those functions, respec-
tively. The much-maligned Hart difference score statistic D fares better than y but is
also limited by a functional asymptote due to the judgment scale range (89%). How-
ever, it performs admirably over a limited range of performance. D, outperforms the
other statistics substantially at 98% linearity, and its failures lie only at the extreme
end of the performance scale. D, is thus the most promising candidate for drawing
interval-level inferences from metamemory data.

The correlation measures suffer on this test because of the boundaries at 1 and 1.
Thus, to test those measures more fairly, we additionally consider transformations of
r and y that remove the compromising effects of those boundaries. One commonly
used function that serves this purpose is the logit, or log odds, which is defined as

X
Logit X =log| ——
8 a(l X)

This function only operates validly on positive values; thus, rather than use G, we use
the transformation of y that Nelson (1984) called V and is presented in our footnote
1. Here, we define G* as the logit of that value. It is related to y as follows:

G*z,(,g(ﬁ_l}
I-y

The linearity of the relationship between the candidate measures G* and r* (the
equivalently transformed Pearson correlation coefficient) and the population value
from which the data were generated was assessed. This transformation increased the
fit of a linear relationship from below 95% to over 99% for both measures under
both simulation conditions. It thus appears as though G* (and r*, for that matter) is
a promising candidate for evaluation of interval-level hypotheses. However, several
characteristics are noteworthy. First, G* is —co when y = -1 and e at y = 1 (i.e., when
performance is perfect), which means that it is quite unstable at the margins of per-
formance. The untransformed measure y does not have this unfortunate property,
but this is the price that is paid by the conversion to a more valid measurement scale.
Second, it allows for no obvious and immediate interpretation in terms of behavior or
theory, although this disadvantage is mitigated by its easy translation to and from y.

Several other conditions were simulated to assess the robustness of these effects.
When the criteria are placed in either nonoptimally conservative or lenient locations,
the fit of d, is decreased by an order of magnitude smaller amount (AR? = 0.003)
than is y (AR? = 0.03), but both d, and G* are equally linear (~99%). Adding vari-
ance to the signal distribution increases linearity slightly; this general effect likely
reflects the well-known advantage of rendering the frequency distribution of ratings




Measurement of Relative Metamnemonic Accuracy 89

pore uniform. In all cases, d,, G*, and r* all provide excellent fits (~99%). When
he numbers of items and subjects are reduced to more validly approximate condi-
ons of a typical experiment on metamemory (20 items for 20 subjects, with a mean
erformance of 10 and variance of 3), all fits suffer, but r* outperforms all others
~97%) with G* not far behind (~95%). Under conditions of relatively low or high
tean memory performance (mean of 20 or 80 items remembered out of 100), none of
he statistics (d,, G*, or r*) shows an appreciable drop in fit.

" The bottom line of these simulations is that the greater linearity of d, extends
er a great variety of conditions, and that a logit transformation of V improves its
nearity significantly. The superiority of d, should not be surprising given that the
fata were generated using assumptions that are built into signal detection theory.
However, the robustness of the effect, as well as the poor performance of y and quite
mpressive performance of G* should be surprising. It would appear that y is a poor
choice of a statistic for use in interval-level comparisons, such as those indicated in
he bottom three lines of Figure 1. Either G* or d, should be used in experimental
esigns that invite interval-level comparison.

Turning to the question of measurement variance, y fares much better. In fact,
cross all of the simulated conditions described above, the coefficient of variation
OV; a ratio of the standard deviation to the mean) was consistently lowest for y.
his is especially true at high levels of metamemory performance (d > 2). There are
iree important caveats to this finding. First, it is difficult to know to what extent the
pundary at 1 on y influences this effect. However, this concern has limited practical
nplications. More worrisome, there is a marked heteroskedasticity in estimates of y
§afunction of d, and this effect has the potential to lead to analytic complications. In
ddition, it appears that at least some of that variability may be legitimate individual-
ifference variability that is lost by y: Reducing memory variance in the simulations
0 reduces (but does not eliminate) the advantage of y over d, in terms of COV. It
pes thus appear that the types of noise introduced in the simulations described here
ad to greater variability in estimates of d, than y. This finding merited a closer look
tempirical comparisons of the two measures.

mpirical Comparisons of Coefficient of Variation

he smaller COV in y than d, could reflect an oversimplification in the simulation or
) empirical regularity. If it is in fact an empirical regularity, then it might temper
ir enthusiasm for d, somewhat. We reexamined the data from Diaz and Benjamin
008) and Benjamin (2003) and estimated the COV across both experiments. For the
iaz and Benjamin (2008) data, the estimates were equivalent (COV = 0.98). For the
enjamin (2003) data, COV for recognition was lower using d, (1.25) than y (1.56),
it slightly higher for d, (0.77) than y (0.72) on the recall test. This result confirmed
claim that the superiority of y in the simulations was a combination of devalu-
g individual-difference variability and the marked simplification of the generating
focess yielding rating data. Overall, the measures appear to be more or less equiva-
it in terms of COV.




90 Aaron S. Benjamin and Michael Diaz
Summary

Here, we have taken a closer look at the question of what types of measures might
best support the types of inferences researchers wish to draw using metamemory
data. In doing so, we have taken advantage of the theoretical framework of signal
detection theory (Green & Swets, 1966; Peterson et al., 1954) and evaluated whether
data from two metamemory experiments (Benjamin, 2003; Diaz & Benjamin, 2008)
were consistent with the assumptions of that framework. Because those assumptions
were strongly supported, we have advised that d, and measures like it (MacMillan &
Creelman, 2005; Wickens, 2001) can profitably be used as measures of metamemory.
Using SDT, we have made our assumptions about the process of making metamem-
ory judgments as explicit as possible. Using data simulated on the basis of those
confirmed assumptions, we have shown that y is unlikely to have those desirable
interval-level characteristics, and we thus advise against its use when interactions,
between-group comparisons, and across-scale comparisons are used. An alternative
is to use G*, which is a simple monotonic transformation of y (or r*, which is the
equivalent transformation of Pearson’s r), which appears to have superior measure-
ment characteristics. However, these statistics suffer from certain characteristics as
well: They are highly variable at their extremes, and they do not have an obvious
or transparent interpretation in terms of subject behavior (like y) or psychologi-
cal theory (like d,). Nonetheless, one possibility is to use y except in analyses that
require interval-level data and use G* for such analyses. The disadvantages of such an
approach relative to the use of d, and signal detection theory are minimized.

With these recommendations, there are a few important details to keep in mind
when estimating the isosensitivity function from metamemory data. First, there
must be a reasonably large number of both remembered and unremembered items.
When there is not, the probability of empty cells in the frequency table is undesirably
high, and the isosensitivity function may be underdetermined. This reccommendation
should be familiar as y is also notably unstable when there are not sufficient numbers
of remembered and unremembered items. Ideal performance is at 50%.

Second, it is important that subjects use the full range of the judgment scale. This
recommendation is much more important for the isosensitivity function than for y
because estimating that function takes advantage of the ordering of judgments (i.e.,
that 1 < 2 < 3 < 4), whereas y evaluates judgments only on a pairwise basis. Subjects
should specifically be instructed to use the full range of the rating scale if the isosen-
sitivity function is to be estimated.

Third, the rating scale should have at least four options. Bear in mind that m options
lead to a curve with m — 1 points, and that subjects who perform particularly well
or particularly poorly may yield fewer than m — 1 usable points. In addition, if the
assumption of normal probability distribution functions is to be tested as part of the
analysis, then there must be sufficient points to fit and test a quadratic function (i.e.,
> 3). In that case, the rating scale should have at least five options. We recommend
the use of a semicontinuous scale, like the subjective probability scale described in
Diaz and Benjamin (2008) and the quantile estimation procedure developed in this
chapter and depicted in Table 1. This technique deals well with individual differences
in scale use that are more difficult to rectify with a scale with fewer options.
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For researchers who wish to evaluate the differential effectiveness of a manipulation
- on metamnemonic accuracy, either within or between groups, it is critical to have in
~ hand a dependent measure that can be defended as having interval-level properties.
- The measure reviewed here, d,, has such qualities to a much greater degree than does
. the commonly used y, and we hope that the review provided here helps researchers
.~ better evaluate their measurement options and use d, fruitfully in appropriate cases
.~ or use an appropriate transformation of y under the necessary conditions.

Notes

1. Nelson called the value associated with this interpretation V; and it is related to y by the
following relationship: V' = 0.5y + 0.5.

2. Remember that “crossover” interactions, which require only an ordinal interpretation,
are not subject to such a concern, as noted here.

3. The difficult condition corresponds to Experiment 1 in Diaz and Benjamin (2006) and
the easy condition to Experiment 2. Both data sets reported here include additional ver-
sions of the experiments not reported in that article.

4. Model fit was tested as,
F= ARz N_Kjull—l
1-R /2141/ K Sull — K reduced

in which N represents the number of data points (the number of points on the isosen-
sitivity function) and K the number of parameters in each model (in this case, three in
the full model and two in the reduced model). There were five points on the isosensitiv-
ity function for all but 6 subjects who had false alarm rates of 0 or hit rates of 1 for one
rating range. Those subjects were omitted from this analysis because the F ratio was
indeterminate. The test distribution was thus F (1, 1) with o = .05, two tailed.

5. Strictly speaking, d, is bounded at —e and e because the mean of the signal distribution
can theoretically lie to the left of the mean of the noise distribution. However, values
less than 0 reveal below-chance performance and thus should only arise because of
measurement noise or perverse subject behavior.
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