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h i g h l i g h t s

• State-trace analysis is an important and evolving technique in psychology.
• It adjudicates between single-variable and multivariable latent process theories.
• It relaxes assumptions about the measurement qualities of psychological data.
• PIRST is totally nonparametric, relying on isotonic regression and permutation tests.
• PIRST successfully recovers the latent structure of simulated data.
• PIRST also reveals limitations in the informativeness of potential data sets.
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a b s t r a c t

State-trace analysis provides a direct and transparent way of evaluating a question that is central to
many studies of cognitive function: do one or two latent processes underlie performance on a particular
task? This evaluation is made using a state-trace plot, which is a bivariate plot of two dependent
variables over a dimensional variable that provides the basis for the hypothesized dissociation, and
a trace variable, which enables the examination over a range of levels of performance. State-trace
analysis has been used successfully in research on perception (Mccarley & Grant, 2008), attention
(Verhaeghen & Cerella, 2002), memory (Dunn, 2008), and categorization (Newell, Dunn, & Kalish, 2010).
However, inferential techniques for evaluating whether a given state-trace plot yields evidence for one
versus two latent processes have only recently started to appear in the literature. Here we develop
PIRST (Permuted Isotonic Regression for State-Trace), a fully nonparametric algorithm based on isotonic
regression that can be applied to a state-trace plot and used to characterize the amount of evidence
in support of one hypothesis or the other. The technique is benchmarked using simulated data, and
is shown to recover the true underlying latent structure under conditions of adequate measurement.
Finally, we compare PIRST to an extant technique for state-trace analysis (CMR) using ROC analysis
and evaluate their respective strengths and weaknesses for diagnosing latent structure.
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A deep question underlying many theoretical and empirical
endeavors in psychology is: does one latent process underlie per-
formance or are multiple processes necessary? Yet, as posed, this
question is poorly matched to the typical tools brought to bear
on its adjudication. This article reviews the state-trace approach
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to the design of experiments and analysis of data and discusses
how this approach is well suited to this commonly posed psy-
chological question. We then introduce a novel technique for the
evaluation of state-trace results and demonstrate its applicability
to simulated data.

Consider the application of the state-trace procedure and anal-
yses to the problem of understanding the origin of recognition
memory judgments. In a recognition memory task, people are
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Fig. 1. Competing latent-variable theories within a state-trace analysis. Left
panel: Single-process theories have only a single latent variable through which
the independent variables in an experiment exert their effect on dependent
variables. Right panel: Multi-process theories have more than one latent variable
in this role.

exposed to a set of stimuli during a learning phase and on a later
test are asked to select those previously studied stimuli out of
a larger set. According to the dual-process view of recognition
(e.g., Jacoby, 1991; Mandler, 1980; Wixted, 2007), the decision to
select a stimulus as previously studied reflects some combination
of familiarity—a sense of ‘‘pastness’’ without specific information
about the context of its occurrence – and retrieval – a memory
for the specific episode during which the stimulus was studied.
Theories differ in how those two processes are assessed, as well
as how they are combined to form a single judgment, but those
differences are not relevant to the questions pursued here. Ev-
idence in support of dual-process theories typically consists of
a finding in which two different dependent variables respond
differentially to an independent variable. For example, a theo-
rist might conclude that recognition memory involves multiple
processes because dividing attention during study reduces scores
more on one type of memory test than on another. Dual-process
theories are contrasted with single-process theories, in which
only a single variable contributes to the recognition judgment
(see also Newell, Dunn, and Kalish (2010), for an example in
the related domain of categorization). These theories also take
a variety of forms, but at heart they share the assumption that
multiple dependent variables all reflect a common latent variable.
The contrasting positions are depicted in Fig. 1 as competing
latent-variable theories.

The psychometric tools that would be needed to rigorously
compare models of these types are rarely used, and the data
collected in typical recognition memory experiments would typi-
cally be insufficient for such models. The most common approach
is to shoehorn the question into a linear model and ask whether
interactions are present between two independent variables of
interest. So, one might conclude that recognition memory in-
volves multiple processes because, as in our earlier example, a
manipulation of divided attention during study reduces scores
more on one type of test than another.

The problems with this approach are, somehow, both well
known and yet not widely recognized. Every experimentalist
worries about the interpretative difficulties associated with
‘‘floor’’ and ‘‘ceiling’’ effects. That unease reflects an appreciation
for the deep hypocrisy associated with applying linear statistical
models to probability-scale data. Yet many experiments have at
their core an interpretation of an interaction that relies on an
interval-level interpretation of the measurement scale. That is,
it must be believed that an increase of 10 units is the same,
regardless of whether that increase is from 0 to 10, 45 to 55, or
90 to 100. That belief is transparently inconsistent with concerns
over measurement floors and ceilings.

This state of affairs has been well known within experimental
psychology at least since 1978, when Geoffrey Loftus published
a paper pointing out that an explicit theoretical mapping be-
tween measured variables and theoretical (latent) variables is
a necessary step in interpreting interactions (Loftus, 1978). A
recent review of the problem suggests that the lessons of this
important article have not spread widely throughout the field
(Wagenmakers, Krypotos, Criss, & Iverson, 2012). Interactions
that can appear or disappear depending on the nature of this
mapping are sometimes called removable interactions, for reasons
that should now be apparent.

Part of the problem is that researchers so desperately want to
draw conclusions about dissociations: that some manipulations
affects this more than that. Developing a fully fledged theory that
maps between measured and latent variables requires substantial
theoretical development and expertise in applying such models
to human data, as Wagenmakers et al. (2012, Figure 5) demon-
strated with the diffusion model of Ratcliff (1978). Such an appli-
cation may stretch the willingness or ken of many experimental
psychologists. Others are even more pessimistic, pointing out
that the reparameterization of manifest variables into potentially
linear latent ones is only allowed under restrictive assumptions
about the relationship between measurement scales and statistics
(Michell, 1986).

Thankfully, there exists an alternative approach, though it is
not well known and not widely used. In the next section, we
outline the logic of state-trace design and analysis of experi-
ments. State-trace logic can be seen as a case of order-constrained
inference (e.g., Barlow, Bartholomew, Bremner, & Brunk, 1972;
Iverson, 2006; Regenwetter & Cavagnaro, 2018), applied to the
common but specific problem of inferring one versus multiple
processes. In this paper, we base our discussion and procedure
around designs in which the variables are all manipulated within-
subjects, as is common in the cognitive paradigms in which the
state-trace procedure is currently being used. However, the logic
of the test allows broad application to a variety of experimental
designs.

1. The state-trace approach

The centerpiece of the state-trace approach is the state-trace
plot, which is a bivariate map of two measures in an experimental
design. Fig. 2 shows three possible state-trace plots. In the left
panel, typical data from a 2 × 2 design are shown. One of the
factors in the design is represented as the two axes of the graph,
and the other as the two points on the plot. If the slope of the
line connecting these two points is not precisely 1, then there is
evidence for an interaction. (Whether that interaction is deemed
‘‘significant’’ or not depends, of course, on the sampling error
associated with estimation.)

In state-trace analysis, one assumes that the data are inter-
pretable at an ordinal and not an interval level. This relaxation
means that the data are no longer interpretable in a linear sta-
tistical framework. In the new framework, the exact slope of
the line connecting our two points is immaterial, since we have
no way of inferring that an increase on one dimension is larger
or smaller than an increase on the other dimension. In other
words, there is no way of validly interpreting an ‘‘interaction’’ in
a 2 × 2 design under ordinal assumptions unless it is a cross-over
(disordinal) interaction (Loftus, 1978). So the left panel of Fig. 2
is uninformative with respect to the question of whether the two
measures derive from a common latent variable or not.

Instead of relying on a theoretically laden interpretation of the
measurement scale, a state-trace experiment includes a second,
trace, variable, which is used to empirically map out the contour



Please cite this article as: A.S. Benjamin, M.L. Griffin and J.A. Douglas, A nonparametric technique for analysis of state-trace functions. Journal of Mathematical Psychology
(2019), https://doi.org/10.1016/j.jmp.2019.03.006.

A.S. Benjamin, M.L. Griffin and J.A. Douglas / Journal of Mathematical Psychology xxx (xxxx) xxx 3

Fig. 2. Examples of theoretical state-trace plots. The diamonds are the same data points across the three plots. Left panel: a typical 2 × 2 experiment for which
state-trace analysis cannot be applied. Middle panel: A fleshed-out state-trace plot indicating the action of a single latent process. Right panel: A fleshed-out state-trace
plot indicating the action of multiple latent processes.

of the two conditions over a range of different performance
levels. This empirical contour replaces assumptions about the
measurement scale, and can be used in a straightforward way
to determine whether the two original data points lie on the
same function or not. In the middle panel of Fig. 2, it can be
seen that, upon sweeping out the range of performance in each
of the two conditions represented in the left graph, there is a
single monotone function that relates the two variables to one
another, and that all the condition variable does is reveal one
versus another portion of that common function. In contrast, in
the right graph, it can be seen that the additional data reveal
that a common monotone function cannot connect all of the
data points. It appears as though one condition lies on a totally
separate function than the other. Such data would be convincing
evidence for the influence of multiple latent variables.

There have been numerous treatments of state-trace theory,
ranging from the highly technical (e.g., Bamber, 1979; Dunn
& James, 2003) to introductory ones geared for experimental
psychologists (Loftus, Oberg, & Dillon, 2004; Newell & Dunn,
2008). A thorough overview is provided in Dunn and Kalish
(2018). The lynchpin of the relationship between a state-trace
plot and a single latent variable formulation like the one shown
in the right portion of Fig. 1 is the fact that any combination of
circumstances that leads performance to be higher in one condition
than another for one dependent variable must also do so for the other
dependent variable. In the limit, what this means is that a plot of
DV1 versus DV2, over the trace variable, must be monotonic. In
practice, the functional constraint is weak monotonicity, allowing
patterns in which performance rises in one condition and does
not fall in the other. If, as in the right panel of Fig. 2, only
a nonmonotonic function can connect all of the points on the
plot, then this circumstance is violated and evidence for multiple
latent variables is present. For a more detailed discussion of this
particular motivating logic, the reader is referred to Loftus et al.
(2004).

Analysis of state-trace functions. Of course, things would be
simple if data always revealed themselves so straightforwardly
as to allow visual detection of the pattern in a state-trace func-
tion. Optimistically, Loftus et al. (2004) proposed that one assess
the rank-order correlation among the full set of data and reject
the single-LV model if that value is less than 1. In the pres-
ence of measurement noise, this is obviously too stringent a
criterion. And the traditional tool in the psychologist’s toolbox
for reducing noise – averaging over subjects – poses an ad-
ditional complication: averaging does not necessarily preserve
monotonicity (Prince, Brown, & Heathcote, 2012).1

1 It is worth remembering that averaging over items within a subject has
the same potential to introduce artifacts (Estes, 1956; Sidman, 1952). Though
it is certainly an important point for future development, we do not pursue it
further here.

Fig. 3. A state-trace plot that is nondiagnostic with respect to latent structure.

A unique difficulty in assessing state-trace functions is that
sometimes a monotone function is possible under completely
uninformative conditions. A monotonic function can be drawn
between all the points of Fig. 3, but it is clear from visual in-
spection that the separation of the conditions on both dimensions
from one another renders it impossible to evaluate whether a
single or multiple functions underlie this particular set of points.
This pattern illustrates how important it is for the points among
a state-trace plot to overlap on both dimensions. This peculiar
aspect of state-trace plots – that the data can render themselves
completely unrevealing – is something that we keep in mind in
our approach presented here.

One recent approach involves the parametric evaluation of
binomial parameters for each datum within the state-trace plot
and the comparison of different ordering models upon those
parameters (Prince et al., 2012). An important advance in this
technique is the inclusion within the suite of models under ex-
amination a no-overlap model that indicates nondiagnosticity of
the plot. However, the model awaits generalization to data that
are not suited to a binomial model (such as subjective ratings,
saccade amplitudes, or response times; cf. Mccarley & Grant,
2008; Verhaeghen & Cerella, 2002).

One approach that holds much promise is isotonic regression.
An isotonic regression line is a monotonic function that, like a
linear regression, minimizes the squared distance between the
data and the fitted function. It has been suggested for use in
state-trace analysis by Newell and Dunn (2008), has been used in
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Fig. 4. Isotonic regression applied to state-trace plots. Data are shown as large
circles; regression lines as small circles connected by lines. Top panel: isotonic
regression applied to the original data. Bottom panel: Isotonic regression applied
to one specific permutation of the data.

practice by Kalish, Dunn, Burdakov, and Sysoev (2016) and was
developed independently here.

Kalish et al. (2016) compared a nested set of models us-
ing isotonic regression. This is also the starting point for the
technique we introduce here. Our technique avoids the need
for parametric formulations for different dependent variables by
pursuing a purely nonparametric means of testing. Since the core
theoretical position of state-trace analysis is a relaxation of the
traditional parametric assumptions for distributions of scores, a
nonparametric means of inferentially evaluating state-trace data
provides a high degree of compatibility. We call our technique
Permuted Isotonic Regression for State-Trace (PIRST).

PIRST combines isotonic regression with a nonparametric ap-
proach to permuting points between experimental conditions.
The test statistic comes from a comparison of the error of the fit
of the regression model to the original data to a sampling dis-
tribution of error from the permuted data sets. The permutation
algorithm critically relies on the following idea: If the underly-
ing data-generating function is truly monotone, then the shuffling
of condition labels should not matter: all the condition variable

does is alter what portion of the function we are sampling from.
Consequently, when the fit quality from the original data set lies
near the middle of the sampling distribution, then the preponder-
ance of evidence supports the conclusion that a single function
– and thus only a single latent variable – is warranted.2 In the
absence of noise, any permutation of the condition labels will lead
to the same fit error as the original (true) assignment of labels.

In contrast, if the data derive from two separate latent func-
tions, then random permutation of the condition labels will re-
duce the quality of the fit, and the error from the fit to the original
data will be lower than the bulk of the sampling distribution.
In fact, in the absence of noise, any permutation of condition
labels will by definition lead to greater fit error than the original
assignment.

The test statistic is thus the proportion of permutations that
lead to greater error in the fit of isotonic regression than the orig-
inal fit to the true data. This value ranges meaningfully from 0.5
to 1.0, but noise can perturb it below 0.5. Values near 0.5 indicate
a preponderance of evidence in favor of a single process; values
near 1.0 indicate that the evidence favors multiple processes.

The steps of this approach are outlined in more detail in the
following section.

We also directly compare this technique with the coupled
monotone regression (CMR) test recently proposed by Kalish et al.
(2016) (see also Dunn & Kalish, 2018) for state-trace analysis.
Isotonic regression is also central to their approach, though their
technique has the appealing quality of minimizing error on both
x- and y-dimensions of the state-trace plot when fitting the
regression equation.

In CMR, the multi-process model fits isotonic regressions to
the two state conditions individually, conditional upon any pre-
specified partial order constraints. The second model includes an
ordering constraint on the variables: the order of one must match
the order for the other. This latter model corresponds to the
optimal fit of the CMR algorithm, minimizing error of an isotonic
regression in both dimensions. The first model always leads to a
superior (or equally good) fit, and the difference between the two
is used to gauge the respective evidence for the two competing
hypotheses.

CMR requires the use of aggregated data because it uses boot-
strapping to compare single-process and multiple-process models
within the dataset, and uses that resampling procedure to supply
a traditional p-value corresponding to a test of the null hypothesis
of a single latent order. Of course, those data may be aggregated
over a group, or over trials within individual subjects.

2. PIRST: A Permutation test for isotonic regression on state-
trace functions

The top panel of Fig. 4 shows a state-trace function with each
condition separately fit by isotonic regression. The regressions are
indicated by the small colored points connected by lines. Because
the actual data points in each condition cannot be directly con-
nected and still preserve monotonicity, some of the points of the
fitted function deviate from the actual data. Like linear regression,
isotonic regression minimizes squared error (unweighted, in this
case, and throughout this paper). Unlike linear regression, it is
constrained only to weak monotonicity, not to linearity. The
combined squared deviations of the fit of these two functions
yields one component of our test statistic—the original SSE.

Rather than permuting the values of the data points to gener-
ate a sampling distribution, our technique permutes the

2 Strictly speaking, multiple latent variables could yield this same outcome,
though only under restricted conditions (Dunn & Kalish, 2018). Parsimony
compels a single-process interpretation in these circumstances.
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assignment of these points to the condition variable. In doing so,
it avoids giving precedence to one variable over another (which
would be necessary if we were to choose to permute along either
the x- or the y-axis of the graph).

There are two steps in the permutation process. The first is
to select the points eligible for permutation. A point is eligible
if it is flanked, on both sides of both the x- and the y-axis, by
one or more points from the opposite condition. It is ineligible if
it is either smaller or larger than every point from the opposite
condition. That is, if there are no data points from the other con-
dition with smaller (or larger) x-values or y-values then the data
point is eligible for permutation. Pre-selection for eligibility helps
the permutation algorithm by disallowing permutations that do
not affect the outcome. However, this step can be skipped under
conditions in which implementation is unwieldy, or if the per-
mutation technique is generalized in the future to experiments
in which there are more than two state conditions.

The fit of an isotonic regression line does not change if the
condition label of these ineligible points changes, so their status is
irrelevant to our test. This is a corollary to the problem reviewed
earlier about how a state-trace plot can be totally undiagnostic if
the data from the two conditions do not overlap with each other
on both dimensions. Likewise, this permutation technique only
induces meaningful variability across permutations when some
of the points in the state-trace plot lie within a region of overlap.
We will explicitly consider the cost of nonoverlapping data in
constructing simulated state-trace plots in the next section of this
paper.

The second step randomly permutes the condition label across
all eligible points, preserving the number of data points from
each condition. What this means is that points stay in the same
positions on the state-trace plot across all permutations, but that
some of them will be randomly reassigned from one condition to
another within each permutation. The way in which this is done
is by assigning all of the condition labels (i.e., ‘Condition 1’ and
‘Condition 2’) from the eligible subset of data points back to that
set of points randomly. The permutation is conducted again if
the outcome of the permutation is the same assignment as the
original data. After a permutation, the isotonic regressions are
refit and the error is measured again. An example permutation
and recomputation of the regressions is shown in the bottom
panel of Fig. 4. The sum of squared error (SSE) for each of many
permutations is computed. In the example case developed here,
Permutations are done at the level of individual subjects, and
generated randomly for each permutation iteration and for each
subject.

The final step is to assess a (one-sided) test statistic by com-
puting the proportion of permuted data sets for which SSE is
greater than the original SSE. When this value is high, it sug-
gests that the true (original) arrangement of the data provides
a more convincing fit to two monotone functions than does a
random arrangement of the data, all while preserving the actual
values of the data points themselves. When the true state of
affairs is a single function, the permutation of the data will
not affect the quality of the fit in the long-run. This is because
the condition variable does not affect the proximity of the data
points to the latent single function—only measurement noise
does. Consequently, the original error will lie near the mode of
the distribution of SSE from the permuted data and yield a mean
of 0.5.3 We do not develop in this paper a specific decision rule, in

3 The sampling distribution is most accurate when ties among SSE scores
are few; in fact, when there are relatively few data points (as in some of the
examples in the figures here), ties can be frequent. Ties do not count towards
evidence for multiple processes, as can be seen by the decision rule (in which
only permuted data sets in which SSE is higher are counted as evidence towards
multiple processes).

part because that decision rule requires an explicit consideration
of the relative costs of false positives (concluding the action of
multiple processes when only a single latent one is truly at work)
versus misses (failing to appropriately conclude the action of mul-
tiple processes). We assess the validity of our technique and CMR
by using ROC functions, which reveal each technique’s ability
to discern single- from multiple-process data over all possible
decision rules.

The starting point of fitting two functions—inherently the
more complex and more flexible model—might seem an indirect
approach to estimating whether one or two functions provides a
better fit to a set of data. We originally attempted a technique
that started with a single function fit to the entirety of the data
and evaluated the quality of that fit. However, that starting point
prevents the application of a sensible permutation algorithm.
Scrambling the condition labels by definition does not change
the fit of a single function to the data set. It was possible to
preserve the condition labels but to permute the values on either
the x- or the y-axis, but this would force a choice as to which
variable underlay the error term. Given the equivalent status of
both Variable A and Variable B in state-trace analysis, this choice
was undesirable and we abandoned the approach.4

Indeed, one weakness of PIRST is the fact that it forces the user
to make a decision about how to assign variables in the original
regression. There is no conceptual difference between the x- and
y-variables in a state-trace design; both contain measurement
error and, often, neither is thought to be logically a predictor
of the other. Future developments might marry regression that
minimizes bivariate error, like CMR, with type of nonparametric
test we develop here. For present purposes, it is important for
users of PIRST to identify ahead of time how the conditions should
be assigned to the x- and y- dimensions of the state-trace plot, in
order to reduce opportunities for capitalizing upon inflated Type
I error that would result from trying both possible assignments.
Alternatively, both assignments could be tested and reported.

Other experimental designs and models of sampling error. The
idea of permuting condition labels can be applied to any set of
data. In fact, the technique as developed here can be directly
applied to group data rather than to individuals. However, in
mixed- or between-subject designs, attention must be paid to
preserving the correlational structure across the points in the
state-trace plot imposed by the design. We do not pursue these
ideas further in this article.

Similarly, the logic of this test may be applicable to designs
with more than two conditions. We develop it here exclusively
for the 2 (condition) × 2 (outcome) × k (trace factor) case but
include some pointers along the way that may be beneficial for
future development.

A resampling approach in combination with cross-validation
could also be used to evaluate the robustness of a particular
conclusion to deviations due to sampling error. We leave this
development for future work as well.

3. Simulation analyses

The process of generating simulated state-trace plots involved
multiple steps, each of which will be described in detail below.

4 In a third approach, we counted the number of points within the entire set
of data that forced a violation of monotonicity. We compared that value to a
similar score, corrected for different numbers of opportunities, computed for the
two individual conditions. If we assume that the true function for each individual
condition is monotone under both latent-variable theories, then deviations from
monotonicity in those functions serve as a measure of noise in our measurement,
and can be used to assess whether the rate evident in the single function was
greater than expected conditional upon our estimate of noise. However, the
technique reported in this paper outperformed that approach consistently, and
so we do not report the details of that approach here.
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Boldfaced text within this description indicates variables that are
included in the analysis using the algorithm introduced previ-
ously. Code for running these simulations is publicly available
at https://osf.io/y6c5r/, as are the data yielded by the specific
simulations conducted here and the outcome of the inferential
algorithms applied to the simulated data.

(1) We start each state-trace plot with a single latent linear
function from which a variable number of points, correspond-
ing to the trace variable, are sampled. This corresponds to the
single-variable model discussed earlier and shown in Fig. 1. These
data are spread evenly throughout the range (with some small
margins) of the state-trace space.

(2) Data for the individual conditions of the state variable
are generated by adjusting the points generated in step (1). The
conditions are varied to include a variable amount of overlap:
the points from the two conditions either overlap considerably
(∼90%) or overlap much less (∼60%).

(3) The performance of the algorithm is evaluated as a function
of the linearity of the underlying function. In the nonlinear
case, the data from step (2) are projected onto a concave-up or
concave-down function.

(4) Critically, our algorithm must discriminate between data
that come from a single latent function versus two latent func-
tions. This is manipulated in our simulations through a latent
interaction variable that adds a constant value to the y-values
from one condition. When this interaction is set to 0, the data
come from a single function. The higher the value of the in-
teraction term, the more prominent the deviation from a single
function.

(5) In the final step, random Gaussian noise is added to all of
the data points. The noise is manipulated to evaluate the perfor-
mance of our algorithm across different levels of measurement
noise.

Generation of data points. The starting point for generating data
is a single linear latent variable S, from which we generate N*2
points, corresponding to the number of measures across the trace
variable for each of two state conditions. In our simulations, N is
either 4, 10, or 50. The distribution of N latent points is governed
by the following equation, which spreads the i values across the
scale without placing them close to the margins (for reasons that
will soon become evident):

Si = 0.7
i
N

+ 0.15

The N data points from each state condition are then gener-
ated by adding or subtracting a constant to these latent strength
values, which spreads the N*2 points evenly: Ai,C = Si ± 0.35
( p−0.5

N ), where C indicates the state condition label. The parameter
p determines the overlap between conditions, and is discussed
below.

Overlap. The overlap between the data points from the two state
conditions is critical to assessing the performance of any ana-
lytic technique for state-trace functions. As reviewed previously
and demonstrated in Fig. 3, some state-trace plots are totally
nondiagnostic because of zero overlap.

In one condition, designed to simulate high overlap of data
points across conditions, p was set to 1 when there were 4 points
per condition, to 1 when there were 10 points per condition, and
to 4 when there were 50 points per condition. The parameter p
determines the number of points from each condition that will
lie outside the overlap region when there is no noise.

In a second condition, designed to simulate low overlap of data
points, p was set to 2 when there were 4 items per condition, to
4 when there were 10 items per condition, and to 18 when there
were 50 points per condition. This set of circumstances provides

a more challenging test for our algorithm. The actual values of
the data are determined by subtracting a constant (0.5) from p,
as shown in the equation for Ai,C . This correction ensures that the
points from the two conditions are offset from one another.

Linear and nonlinear functions. For some simulations, a latent
linear function provides the basis for the state-trace plot. In that
case, the x and y values of the data points are set directly to the
values of A at this point.

For other simulations, the data were transformed into a non-
linear function by projecting them onto an arc from a circle. To
ensure that A lay within the range of the circle corresponding to
the appropriate concavity, A is remapped to the portion of the
circle from 270◦ to 360◦:

A∗i,C = 90A + 270

and corresponding functions are generated that are either
concave-up:

y = sin
(
A∗i,C

)
+ 1

x = cos(A∗i,C )

or concave-down:

y = cos
(
A∗i,C

)
x = sin

(
A∗i,C

)
+ 1

both of which are shown in Fig. 5.

Interaction constant. To this point, the generated data are all
derived from a single-process model. To simulate the effects of
a true two-process model, an interaction constant was added to
the y values for one condition. The value of this constant was
either 0 (single-process model), 0.1, 0.15, or 0.2, corresponding
to different effect sizes.

Noise. Finally, all of the data points within the plot were per-
turbed by Gaussian noise with a mean of 0. The standard
deviation of the imposed noise was either 0.1, 0.2, or 0.4, cor-
responding to different levels of measurement noise a data set
might contain.

Simulation parameters. Within each simulation, there were 4,
10, or 50 data points generated per condition. For each simulated
experiment, the size of the effect and number of data points
was held constant, and 100 simulated subjects were generated.
Fig. 5 shows example simulated subjects for the 4 data-point
condition, across all of the other relevant dimensions. There are
four quadrants to this figure, corresponding to the four combina-
tions of latent function shape (linear or nonlinear) and separation
between the conditions (large or small). Within each quadrant,
the columns indicate increasing effect size of the latent interac-
tion, with the left graphs showing the action of a single latent
process, the middle graphs showing dual processes with a small
effect size, and the right graphs showing dual processes with a
large effect size. The rows within each quadrant in and the rows
indicate the contribution of noise, with the top being no noise
(indicated for illustration only; this condition is not included in
our simulations), and the bottom including a small amount of
noise (σ = 0.1).

Analysis using PIRST. The data from each simulated subject
was analyzed by the permutation-regression technique detailed
previously. The outcome of this analysis is shown in Fig. 6, which
shows a heatmap of the proportion of cases in which the original
SSE exceeded the SSE from the permuted data sets, for each effect
size, overlap condition, and number of points in the state-trace
plot. Recall that this value will be high when the multiprocess
explanation provides a superior account of the data.

https://osf.io/y6c5r/
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Fig. 5. Examples of simulated individual-subject state-trace plots varying in shape of the underlying latent function, noise, separation between conditions, and size
of the latent interaction. See text for a more detailed description of the conditions.

Fig. 6. Heatmaps of the rate at which PIRST yields greater evidence against the single process model. Hotter colors indicate more evidence against the single process
model. The results of the simulations are described in detail in the text. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
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Fig. 7. ROC functions for PIRST, collapsed across levels of noise.

The PIRST procedure also was assessed with receiver-operating
characteristic (ROC), analysis, in which the criterion for adjudi-
cating between single- and multiple-process accounts was varied
from 0 to 1 in steps of 0.01. An ROC plots the true positive
detection rate (concluding multiple processes when there are
multiple latent variables) against the false positive rate (conclud-
ing multiple processes when there is only a single latent variable).
The overall diagnosticity of the procedure is assessed by the total
area under that curve (AUC), which ranges from 0.5 when the
technique can only diagnose latent structure at a chance rate to
1.0 when it yields perfect performance.

For the simulations presented here, we took the proportion
of permutations in each condition in which the permuted SSE
exceeded the original SSE, and compared that value to a decision
criterion that varied from 0 to 1. When that criterion is 1, the
proportion of cases in which the permuted SSE is larger will be
at the lowest possible value and will intersect the y-axis at that
value. When the criterion is 0, the hit and false-alarm rates will
be 1. Criterion values between these two extremes determine the
shape of the ROC and the consequent AUC.

To roughly simulate the conditions under which state-trace
functions are generated from actual experiments, we computed
ROCs and associated AUC values in batches of 100 simulated
subjects. The top portion of Table 1 shows the AUC values for
every condition of the simulation and Fig. 7 shows the ROCs
collapsed across the noise variable.

False alarms. Note that in all cases, values of this statistic
rarely exceed 0.5 by much when the latent interaction is absent,
indicating that this test is not prone to indicating evidence for
multiple processes when multiple processes are not evident. The
rare exceptions that do occur do so when the state-trace plot
includes a high number of points per condition. This can be seen
in the leftmost points of the heatmap in Fig. 6.

Noise. Noise imposed upon the individual data points exhibits
a prominent effect on the ability of the model to recover evidence
for multiple processes when they actually do contribute to the
data. At high levels of noise, high values of detection are only
evident under ideal conditions: when there are many data points
and when separation between the conditions is small. Overall
discriminability, collapsed over the other variables, is revealed by
the AUC, which drops from 0.99 to 0.89 over the levels of noise.

Size of the latent interaction. More evidence for multiple pro-
cesses is evident when the latent interaction is larger. This can
be seen in the increasingly hot colors that appear to the right of
each quartet of boxes in Fig. 6, and in the lower AUC values for
smaller interactions in Table 1. Mean AUC values rise from 0.91
to 0.98 as the interaction size increases. This result indicates that
the technique is more apt to reveal effects of multiple processes
when the contribution of the latent interaction of those processes
is larger.

Overlap of conditions. Recall that state-trace plots have greater
potential to be diagnostic when the data points overlap to a
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Table 1
Area under the curve (AUC) values for PIRST (top rows), CMR with no partial order constraints (middle rows table), and CMR with partial order constraints (bottom
rows). Higher values indicate greater recovery of the true latent state. Extent of deviations from 1 (perfect diagnosticity) are indicated by increasing shades of red.

greater extent. That intuition notwithstanding, PIRST did not re-
veal overall poorer discriminability under low- than high-overlap
conditions. However, overall performance was high across the
simulations and may not prove to be a strict test of the degree
to which data overlap contributes to test performance.

Data points per condition. PIRST is more able to detect the
presence of multiple processes when each individual’s state-trace
function includes a larger number of data points. Mean AUC
values drop from 1.0 (with 50 points) to 0.86 (with only 4 points).
However, as can be seen in Fig. 6, it also appears that a large
number of data points increases the rate at which the technique
yields a false alarm in the absence of a latent interaction. When
these two factors are assessed together, it can be seen in Fig. 7
and Table 1 that overall diagnosticity of PIRST decreases with the
number of points in the state-trace plot. It is worth pointing out,
however, the PIRST performs well with only 10 points per condi-
tion, which, though larger than many state-trace experiments in
the literature today, is probably not beyond the reach for many
experimental protocols.

Latent function shape. The technique seems to be highly robust
to deviations from linearity in the underlying function. The bot-
tom heatmaps appear very similar to the ones generated from a
linear function, and the AUC values are affected only slightly.

As can be seen, PIRST acts appropriately. It is more likely
to indicate support for multiple processes when the effect size
is larger, and when there are more data within the state-trace
plot. In all cases, the test statistic is higher when the underlying
model is multiprocess than when it is not. Across the simulations
conducted here, the average AUC for PIRST is 0.95.

Analysis using CMR. The coupled monotonic regression tech-
nique was applied to the same simulated data set. This appli-
cation was mostly automated, using the open-source software
provided by Kalish et al. (2016). There are two main parameters
to set for the technique: the number of bootstrapped samples
generated, and the (optional) addition of any partial order con-
straints. A partial order constraint can be imposed when there
are a priori expectations that the trace manipulation should have
a specific directional effect (for example, increasing study time
can be expected to improve performance on both dependent
variables). We conducted multiple simulations using CMR. In one,
we follow the lead of Kalish et al. (2016) and impose no partial
order constraints on the analysis. In the second, we impose a
partial order constraint. Because trace variables in state-trace

experiments (like study time) often provide straightforward order
constraints, users of CMR are often likely to be able to take ad-
vantage of them, and we wanted to evaluate performance under
conditions more relevant to the end user. It turned out that dif-
ferences in outcomes between the simulations with and without
the constraint were not large. Because the outcomes were so
similar between the two simulation conditions for CMR, we focus
our discussion on the patterns that are evident across simulation
conditions. When we cite averaged statistics from CMR in the
forthcoming discussion, we are referring to the version with no
partial order constraints unless otherwise noted.

We also followed the recommendation of Kalish et al. to use
10,000 bootstrap samples, with the exception of the 50 point
conditions. In those conditions, we used only 1000 bootstrap
samples.

In order to ensure that the reduction in bootstrap samples
did not yield uncomfortably variable estimates of fit, we re-ran
a subset of the conditions with 10,000 samples and compared
the p-values across those replications. In all cases, the observed
difference in p-values were less than 0.01, and the majority were
less than 0.001. Based on this outcome, we are comfortable that
the reduction in samples did not materially affect the outcome of
the fits.

Because CMR computes a traditional null-hypothesis p-value,
the outcome of the procedure itself is not directly comparable to
PIRST, which does not. To directly compare the techniques, we
generated ROC functions and computed AUC for CMR. As before,
ROCs were generating by varying the criterion from 0 to 1 in steps
of 0.01. ROCs collapsed across noise levels are shown in Figs. 8
and 9, and AUC values for every condition are shown in Table 1.

Noise. Across the values of noise implemented here, CMR is im-
pressively resistant to its effects. AUC values do not drop between
small (0.90) and large (0.90) levels of noise. Of course, under
other compromising conditions, such as small latent interaction
size, the effects of noise are evident. These effects can be seen in
Table 1.

Size of the latent interaction. CMR responds appropriately, with
greater discriminability of underlying structure when the latent
interaction is large (AUC = 0.95) than when it is small (AUC =

0.87).
Overlap of conditions. Unlike PIRST, CMR responds as expected

to variations in the overlap of data points across conditions. AUC
values are higher when overlap is high (0.94) than when it is low
(0.87).
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Fig. 8. ROC functions for CMR with partial order constraints, collapsed across levels of noise.

Data points per condition. CMR appears to be highly resilient
to reductions in the number of data points in the state-trace plot.
AUC values range from 0.88 in the 50-point condition to 0.89
in the 4-point condition. However, upon inspection, it can be
seen that the effect of data points depends on the contribution
of noise. When noise is high, CMR responds as expected, with
lower discriminability in the 4-point condition (AUC = 0.79) than
in the 50-point condition (AUC = 0.98). However, it exhibits un-
expected behavior in the low-noise condition, where it performs
more poorly in the 50-point condition (0.75) than in the 4-point
condition (0.99).

The puzzling nature of this result led us to replicate a subset
of these conditions and confirm the result. Upon examining the
actual distribution of p-values for these conditions (available in
the online supplement), it can be seen that the procedure is false-
alarming at ceiling rates in the low-overlap, low-noise condition.
This leads to the chance level diagnosticity seen for these cells in
Table 7. This result is obviously of some concern for users of this
procedure if it turns out to be general.

Comparison of PIRST and CMR. Overall, both procedures per-
form quite capably, with mean AUC values of 0.95 for PIRST and
0.90 for CMR across the simulations we conducted here. That
small difference should not be taken to mean much, since these
values depend on the particular simulations chosen and may

well differ given other variables or other implementations of the
variables explored here.

Table 2 shows the differences between PIRST and CMR across
the same conditions shown in Table 1. There are two general
patterns evident in this table. First, PIRST performs more capably
under conditions of low and medium noise but is overtaken
by CMR under conditions of high noise. Second, these effects
are most prominent in the 4-item condition, especially under
conditions of high overlap.

One additional result is of note. CMR, as noted earlier, exhibits
a surprising tendency to diagnose latent structure more poorly
under certain conditions when there are more points in the state-
trace function. Those conditions include a concave latent function
with low overlap between conditions. In fact, when there are 50
points, CMR has no diagnostic capacity. Whether these findings
are a quirk of our simulations or a general problem inherent to
CMR remains a target for future work.

There are, however, two important caveats in interpreting the
results presented here. First, as mentioned earlier, a wider range
of conditions and deeper exploration of relevant variables will
be necessary to determine with any generalizability the relative
strengths and weaknesses of each approach. Second, the area un-
der the ROC is an important tool for understanding the potential
diagnosticity of a procedure, but it does not speak directly to the
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Fig. 9. ROC functions for CMR with no partial order constraints, collapsed across levels of noise.

Table 2
Heatmap of the differences in AUC between PIRST and CMR. Top table uses CMR with no partial order constraints, and the bottom
table uses CMR with partial order constraints. Yellow boxes indicate conditions that favor PIRST; blue boxes indicate conditions that
favor CMR.
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implementation of a decision rule and the adequacy of a single
decision rule across subjects, conditions, or experiments.

4. Summary

State-trace experiments provide a convenient and direct way
of contrasting two common hypotheses about the bases for per-
formance: that they derive from a single psychological influence,
or from multiple influences. Theories about the joint contribution
of dual processes like this appear throughout the history of psy-
chology. At the center of the best-selling popular psychology book
Thinking, Fast and Slow (Kahneman, 2011) is the presumption
that two ‘‘systems’’ contribute to reasoning, one of which is slow
and deliberative, and the other of which is fast and heuristic.
This distinction goes back (at least) to William James (1890),
who postulated a similar distinction between fast associative
processes and (slower) ‘‘true’’ reasoning.

Yet the multitude of experiments that arise from such dis-
tinctions rarely take seriously the question of how to assess the
presence of two distinct processes within a set of data. Dual
processes are either taken as a given, and the data are interpreted
conditional upon that assumption, or they are tested by one of the
many imperfect means that traditional statistical tools have to of-
fer. When the rigor of state-trace analysis is applied to a question,
an outcome supporting the operation of multiple processes is not
guaranteed. In fact, the application of the state-trace procedure to
studies of reasoning has revealed – in contrast to the intuitions
of luminaries like James and Kahneman – stronger support for a
single than for multiple systems of reasoning (Hayes, Stephens,
Ngo, & Dunn, 2018; Stephens, Dunn, & Hayes, 2018).

The underlying problem is a mismatch between the mea-
surement qualities of psychological data and the requirements
of popular analytic tools. Linear models require linear assump-
tions. When data can be reparameterized in such a way so as
to have defensively interval qualities (e.g., Matzen & Benjamin,
2009; Wagenmakers et al., 2012), then linear interactions can
meaningfully reveal dissociations (Benjamin, 2010). But the typ-
ical data gleaned from experiments in psychology – accuracy,
response times, rating scale measurements – do not naturally
have this capacity and must be treated with caution. State-trace
analysis does so by making the minimal assumption of ordinality
in measurement.

PIRST asks only the question: do the original data look more
convincingly like two separate functions than permuted versions
of those data? If they do, then the conclusion is warranted that
multiple processes are at work. If they do not, we should be
disposed to concluding the action of only a single process.
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