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Abstract 

This paper applies a bivariate continuous-strength model to understanding the 

relationship between recognition and source memory, and to evaluating whether learning 

and forgetting in those tasks follows the same or different information pathways.  The 

model is grounded in the source monitoring framework, which suggests that the strength 

of a test probe depends upon what aspects of a memory representation are queried.  The 

fits of the model suggest that that the effects of study time (Experiment 1) are not global 

across the memory trace—that is, that performance on source memory and recognition 

tests do not increase proportionately with increased learning—but that the effects of 

forgetting (Experiment 2) are.  The results further support the viability of continuous-

strength models in interpreting performance on memory-judgment tasks and suggest that 

forgetting does not induce a reversion of the processes that operate during encoding. 
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  The goal of this article is to apply multivariate signal-detection theory (SDT, 

Ashby, 1992; DeCarlo, 2003, Hautus, Macmillan & Rotello, 2008) and the source 

monitoring framework (Johnson, Hashtroudi, & Lindsay, 1993) to understanding the 

effects of learning and forgetting on recognition, and to evaluate the performance of that 

model.  Along the way, the performance of the multivariate model is assessed with 

respect to restricted versions of that model, as well as to dual-process signal-detection 

theory (DPSDT; Yonelinas, 1994, 1999), which provides an alternative theoretical 

conception and is a popular benchmark in the field.  Before we consider the relationship 

between learning and forgetting, we review the nature and origin of these competing 

theories and provide the experimental and analytic landscape on which our analysis of 

learning and forgetting will take place. 

In the simplest case, signal detection theory explains how a stimulus is assigned to 

one of two mutually exclusive and exhaustive statistical hypotheses (e.g., ―old‖ or ―new‖; 

Egan, 1958; Green & Swets, 1966), each with its own unique probability distribution 

(Swets, 1963).  In the case of recognition, there is some memorial distribution for the 

studied items that is distinct from the distribution of unstudied items.  For any given 

stimulus, a participant’s task can be said to be to infer which of those distributions that 

stimulus belongs to.  It is this perspective that underlies all of the theories presented and 

evaluated in this article.  We will not consider alternative approaches here, such as 

theories with probabilistic responding (Parks, 1966) or noisy decision-making (Benjamin, 

Diaz, & Wee, 2009).  

Strength theories of recognition 
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Strength theories of recognition tie the decision apparatus of signal detection 

theory to a mnemonic process by suggesting that both the old and new distributions are 

continuous functions of some unitary variable ―strength.‖  Process models commonly 

describe this strength variable as the outcome of comparing a test stimulus to the contents 

of memory as a whole (Hintzman, 1986; Murdock, 1982; Shiffrin & Steyvers, 1997).  

There is naturally noise in such a process, but on average, previously studied stimuli yield 

a higher ―degree of match,‖ or strength, than the non-studied stimuli.  A recognition 

decision can then be made by choosing an appropriate decision criterion and calling any 

stimulus whose strength exceeds that criterion old.  This strategy will result in a greater 

number of truly old items than new items being called old. 

Yonelinas (1999) argued that, when two classes of items are studied under 

equivalent conditions, and thus equal in strength, strength theories have no way of 

distinguishing between those items.  One experimental task that reveals this ability is a 

source memory task.  In a source memory task, people study stimuli that appear in 

various different contexts (usually two).  At test, they are given a stimulus and have to 

indicate which of the contexts that stimulus was tested in.  To the extent that the study 

was well controlled—i.e., the different contexts are equally salient and equally 

memorable—items from each of the contexts will, on average, have equal memory 

strength (Yonelinas, 1999).  As such, there is no criterion participants can use on a pure 

strength axis that would lead to a differential rate of responding to the different stimulus 

types.  In other words, no matter where the criterion is set, the rate of providing a given 

response should be the same for all stimulus types.  This would imply that people should 
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not be able to perform above chance on source memory tests.  The fact that they can is 

evidence against strength theory. 

An alternative view to the single-process strength view is the dual-process view.  

According to this view, recognition memory relies on two distinct processes instead of 

just a single strength variable (Atkinson, & Juola, 1973, 1974; Jacoby, 1991; Mandler, 

1980; Yonelinas, 1994, 1997, 1999, 2002).  The first process, frequently called 

familiarity, is essentially the same type of strength variable evident in the single-process 

models.  The second process, however, is qualitatively different.  This process, usually 

termed recollection, refers to retrieval of the episode in which a stimulus was studied.  

When a studied stimulus is recollected, the participant has access to the qualitative details 

of the study episode.  In such cases, the participant can infer with high confidence that the 

stimulus is old since they remember the details of when it was studied. 

In the typical source memory task, dual-process theorists originally posited  that 

familiarity is, on average, the same for equivalently studied items from different sources 

and thus useless in distinguishing between them (Yonelinas, 1999).  Any above-chance 

performance therefore depends solely upon the process of recollection
1
.  When a studied 

item is recollected, the participant is able to remember details of the source and uses that 

information to make correct source memory response.  When a studied item is not 

recollected, the participant essentially responds at random (i.e., based on familiarity).  

This model of source memory performance implies that source memory relies entirely 

upon recollection, and makes predictions that will be laid out in more detail below.  

                                                           
1
 More recent versions of dual-process theory have softened this claim (since the empirical data has not 

supported it).  Familiarity can now support source judgments when item and source information are 

―unitized.‖   Unitization is discussed further below. 
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Source Monitoring Framework: Strength Theory Revisited 

The problem with applying strength theories to source memory, as originally 

postulated by dual-process theories, is that the different types of old items are all equal in 

memory strength.  How can two equally studied, equally salient, items yield different 

strengths or ―goodness of match‖ on a continuous variable?  It is this failing of strength 

theories that motivate dual-process approaches, but a reconciliation may be possible.  In 

particular, the answer may be found in the Source Monitoring Framework proposed by 

Johnson et al. (1993).  According to the source monitoring framework, when people 

search their memories for a source, they tend to look in the areas of memory that can 

confirm or disconfirm the presence of that source.  For example, when trying to 

remember whether a particular stimulus was previously seen, people will assess how 

much evidence there is for that hypothesis in visual areas of memory.  Lack of evidence 

in auditory areas may even be taken as additional evidence in favor of visual 

presentation. 

The source monitoring framework implies that the ―degree of match‖ or strength 

of an item can be different depending on what the test question is.  Marsh and Hicks 

(1998) found support for such a view by using a variant of a source memory test called an 

exclusion test (Jacoby, 1991).  In an exclusion test, participants are asked whether a test 

item occurred in a particular source.  The participant is to respond ―yes‖ if it was studied 

in that source, and ―no‖ if it was studied in a different source or if it was not studied at 

all.  Marsh and Hicks (1998) had participants read some words and generate other words 

from anagrams during study.  They found that participants were better able to 

discriminate between these two types of studied words when they were asked ―was it 
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generated?‖ than when they were asked ―was it read?‖  Marsh and Hicks (1998) 

suggested that the prior question directed participants’ attention towards (the memory of) 

the processing performed during study, which was more useful in distinguishing between 

the different item types, and the latter question directed their attention more towards 

visual or semantic aspects of the memory trace, which was less useful in distinguishing 

the item types. 

In a converging line of evidence, Jacoby, Shimizu, Daniels, and Rhodes (2005) 

found evidence that participants process the novel items during a recognition test 

differently depending on what they are being tested on.  Specifically, they had 

participants process some items deeply and some item shallowly during a study phase.  

They then were given three different recognition tests.  In the first test, participants were 

correctly informed that all the old items were from the same levels-of-processing 

condition in the study phase (i.e., they were all either from the deep or from the shallow 

condition).  In the second test, they were correctly informed that all the old items were 

from the other levels-of-processing condition.  Finally, on the critical third test, 

participants were tested on the novel items that had appeared on the first two tests.  

Jacoby et al. (2005) found that participants better remembered novel items that had 

previously appeared on the ―deep‖ test than those that appeared on the ―shallow‖ test.  

They interpreted these findings as suggesting that participants were processing the items 

on these tests differently, and presumably in a manner consistent with how the old items 

had originally been processed.  That is, when participants were tested on ―deep‖ items, 

they searched ―deep‖ areas of memory for evidence of a test item, and this process 

yielded superior memory for the novel items that were also processed deeply. 
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Jacoby et al.’s (2005) results are complimented by findings from studies using event-

related potentials (ERPs).  ERPs elicited by novel items during ―deep‖ tests are different 

than those elicited by novel items during ―shallow‖ tests (Rugg, Allan, & Birch, 2000).  

Similarly, ERPs for novel items are different on recognition tests than they are on source 

memory tests (Ranganath & Paller, 2000).  Source memory tests in general tend to elicit 

more frontal positivity than recognition tests, even for the exact same stimuli (Senkfor & 

Van Patten, 1998; Van Patten, Senkfor, & Newberg, 2000).  These findings are consistent 

with the view that different tests query memory in qualitatively different ways. 

Competing theories and the receiver operating characteristic (ROC)  

The domain in which these theories have been pitted against one another is in 

predicting the form of the Receiver Operating Characteristic (ROC).  An ROC is a plot of 

the hit rate against the false alarm rate across all possible response criteria.  With a simple 

yes-no response, there is only one hit–false-alarm pair generated for any given 

participant.  In contrast, a multiple-rating response scale yields multiple hit–false-alarm 

pairs that can be useful in distinguishing the predictions of different theories.   

Strength theories frequently assume that the old and new distributions are 

normally distributed (see Figure 1a).  This assumption makes specific predictions about 

the shape of the ROC.  For an infinitely conservative criterion, every old and new item 

should be rejected.  This would lead to a hit–false-alarm pair of (0,0). In contrast, an 

infinitely lenient criterion would lead to a hit–false-alarm pair of (1,1).  A plot of all 

possible criteria between these two extremes yields a monotonic curvilinear function such 

as the ones shown in Figure 2a.  The solid line in Figure 2a shows an ROC generated 

when the old and new distributions are of equal variance.  This ROC is symmetric with 
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respect to the minor diagonal.  The dashed line shows an ROC generated when the signal 

distribution has 25% greater variance than the new distribution.  This latter model, called 

the Unequal Variance Signal Detection (UVSD) model, is what is typically supported 

when strength models are fit to recognition data (Glanzer, Kim, Hilford, & Adams, 1999; 

Heathcote, 2003; Matzen & Benjamin, 2009; Ratcliff, Sheu, & Gronlund, 1992; 

Yonelinas, 1994; Wixted, 2007).  The degree to which these curves depart from the 

chance diagonal is related to the distance between the means of the old and new 

distributions in Figure 1a.   Figure 2b shows this plot when the axes are transformed to z-

scores using the inverse of the cumulative normal distribution.  Strength theories predict 

that this plot (the zROC) will be a straight line with slope equal to the ratio of the 

standard deviations from the new and old distributions, respectively (Macmillan & 

Creelman, 2005). 

Dual-process theories make somewhat different predictions about the shape of the 

recognition memory ROC.  The first dual-process model that was proposed that predicted 

a particular ROC curve was the Dual-Process Signal-Detection (DPSD) model 

(Yonelinas, 1994).  This model suggests that recollection is an all-or-none threshold 

process.  That is, an old item is either recollected or it is not.  If the item is recollected, 

then participants are certain that it is old and respond with the highest confidence old 

response.  If an item is not recollected then participants respond according to the item’s 

familiarity, which is thought to be an equal-variance signal-detection process.  New items 

are never recollected in this model (i.e., there is no illusory recollection) and as such all 

responses to new items are based on the equal-variance familiarity process.  Specifically, 

the probability of a response above the j
th

 criterion, cj is: 
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P(X > cj | old) = R + (1-R) * Φ(d - cj)     1 

P(X > cj | new) =                   Φ(-cj)     2 

where X is the response variable, R is the proportion of old items that are recollected, d is 

the distance between the old and new distributions, and Φ is the cumulative normal 

distribution function.  The shape of the ROC curve predicted by the DPSD model is 

shown in Figure 2c.  For an infinitely conservative criterion the model predicts a hit–

false-alarm pair of (0, R)
2
.  In other words, the model predicts that 100*R percent of the 

old items will always be endorsed no matter how strict the criterion.  The shape of the 

zROC function predicted by the DPSD model is shown in Figure 2d.  The zROC departs 

from linearity for the most conservative points.  Moreover, this departure from linearity 

increases as R increases.  When R=0, the model reduces to an equal-variance signal 

detection model with a linear zROC with a slope of 1.  As R increases, so does the 

curvilinearity of the zROC.  More recently, models have been developed that relax the 

all-or-none threshold assumption and allow recollection at variable degrees of confidence 

(Kelley & Wixted, 2001; Macho, 2002, 2004; Sherman, Atri, Hasselmo, Stern, &  

Howard, 2003; Yonelinas & Parks, 2007; see also DeCarlo, 2002, 2003a for a 

mathematically equivalent strength model).  Such models can produce close 

approximations to all four panels in Figure 2. 

The empirical evidence from recognition ROCs has come down mostly in favor of 

the UVSD (or the related Variable Recollection Dual Process model, which is 

indistinguishable from it under some conditions).  The zROC has been consistently found 

to be linear for recognition with a slope of about 0.8 (Glanzer, Kim, Hilford, & Adams, 

                                                           
2
 There is no real value that you can assign to cj in Equation 1 that would yield a hit rate lower than R. 
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1999; Healy, Light, and Chung, 2005; Heathcote, 2003; Ratcliff, McKoon, & Tindall, 

1994; Ratcliff et al., 1992; see Wixted, 2007, for a review).  The UVSD always predicts 

linear zROCs and the parameter that accounts for the slope is the ratio of the standard 

deviations of the underlying distributions.  The DPSD model, on the other hand, only 

predicts linear zROCs when R is zero, but only predicts slopes less than 1 when R > 0.  

That is, as pointed out by Heathcote (2003), the parameter in the DPSD model that 

creates slopes less than 1 is the very same parameter that makes the zROC curvilinear.  

Thus, as the slope of the zROC decreases, the curvilinearity should increase.  There is no 

evidence of such a relationship in item recognition (Glanzer et al., 1999; Heathcote, 

2003).  Recognition zROCs tend to be linear even when the slope is very shallow. 

Dual-process model of source memory.  Yonelinas (1999) developed the DPSD 

model to be able to predict the ROC functions for source memory tasks, and it is in this 

domain in which they have greater success.  Specifically, the probability of a response 

above the j
th

 criterion, cj is: 

P(X > cj | source A) = R + (1-R) * Φ(d - cj)    5 

P(X > cj | source B) =           (1-R) * Φ(d - cj),   6 

where the scale is arbitrarily defined as higher values being more confidence that the item 

was from source A (reversing the scale would merely swap the ―given‖ portions of 

equations 5 and 6).  Equation 5 is analogous to ―hits‖ (calling a source A item ―source 

A‖) and Equation 6 is analogous to false alarms (calling a source B item ―source A‖).  If 

a ―target‖ (a source A item) is recollected it is always endorsed (i.e., it is called ―source 

A‖).  Conversely, if a ―lure‖ (a source B item) is recollected it is never endorsed (i.e., it is 

never called ―source A‖).  All the non-recollected items are endorsed according to the 
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strength component.  However, since the target and lure distributions both have the same 

mean, d, the rate of endorsing unrecollected items is the same.  This model implies that 

above-chance performance on source memory depends entirely on recollection.  All 

responses based on familiarity will be at chance levels.  Moreover, it predicts that the 

source memory ROC will be a straight line going from the point (0,R) to the point (1-R, 

1).  That is, 100*R percent of the targets will always be endorsed, 100*R percent of the 

lures will never elicit false alarms, and all criteria from -∞ to +∞ will yield the exact 

same endorsement rate for non-recollected items from both item types (i.e., a linear ROC 

with slope of 1).  Yonelinas (1999) fit this model to three experiments using a source 

memory task and found that the ROC for all three were fit well by a linear function, as 

predicted by DPSD.  According to Wixted (2007), this result was a major reason for the 

growth in popularity of the DPSD model.  More recently, dual-process theorist have 

softened the assumption that familiarity is not useful for source memory by arguing that 

source information can be ―unitized‖ with item information, such that familiarity can 

distinguish between different sources (Haskins, Yonelinas, Quamme, & Ranganath, 

2008)  Such a view no longer predicts linear ROCs (though the intercepts remain the 

same), but also damages the central argument as to why source memory cannot be based 

on a strength process.  We do not further pursue the reach of dual-process unitization 

models, though we do note that the empirical evaluation of this theory using ROC 

analysis has not been supportive of the unitization claim (Mickes, Johnson, & Wixted, 

2010). 

Many studies have since found curvilinear source memory ROCs, making 

Yonelinas’s (1999) results the exception rather than the rule (Glanzer, Hilford, & Kim, 
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2004; Hilford, Glanzer, Kim, & DeCarlo, 2002; Onyper, Zhang, & Howard, 2010; Qin, 

Raye, Johnson, & Mitchell, 2001; Slotnick & Dodson, 2005; Slotnick, Klein, Dodson, & 

Shimamura, 2000; see Wixted, 2007, for a review).  In a particularly telling 

demonstration, Slotnick and Dodson (2005) reanalyzed the data from Yonelinas (1999).  

According to DPSD theory, when an item is recollected in recognition memory it is given 

the highest confidence response.  According to Yonelinas (1999), it was this same 

recollection process that created the above-chance linear ROCs for source memory.  

Slotnick and Dodson (2005) looked at one experiment from Yonelinas (1999) in which 

participants made both a recognition decision and a source memory decision for every 

old item.  Looking at the source memory ROCs for every old item (regardless of how 

they rated it in the recognition task) yielded the same linear ROCs that Yonelinas (1999) 

found.  However, when they constrained the set of items to only those that were given the 

highest rating on the recognition task, the linearity disappeared and the ROCs were 

highly curvilinear.  According to DPSD, all items that were recollected would have been 

included in this set, since recollected items are given the highest confidence response.   

Strength theory of recognition and source memory: A unified conceptualization 

The relation between different memory tests can be estimated directly by a 

multivariate extension of the UVSD model (Banks, 2000; Wickens, 1992; DeCarlo, 

2003b; Hautus et al., 2008).  In this model, each memory test is placed on an axis 

orthogonal to each of the other memory tests.  Participants make a decision for a given 

test by placing criteria perpendicular to that test’s axis and endorsing items whose 

strength falls on one side of these criteria.  Figure 3a gives an example of what a bivariate 

signal detection model may look like for recognition and source memory tests (DeCarlo, 
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2003b; Hilford, Glanzer, Kim, & DeCarlo, 2002; Hautus et al., 2008; Slotnick & Dodson, 

2005).  The bottom-middle distribution represents the new distribution.  The top-left and 

top-right distributions represent two old distributions studied in two different sources 

(arbitrarily called source 1 and source 2, respectively).  The dimension going back ―in 

depth‖ in Figure 3a represents the recognition memory dimension.  If we were to take the 

integral of the bivariate curves along the other dimension, we would get a standard 

univariate signal detection model for recognition memory.  That is, both of the old 

distributions would have the same mean, and it would be greater than the mean of the 

new distribution.  Both old distributions would also have the same variance, which is 

slightly greater than the variance of the new distribution.  According to this model, the 

memory strength obtained from a recognition task would not be able to distinguish 

between the two different contexts.  In contrast to this, the horizontal dimension in Figure 

3a, labeled source memory, would be able to distinguish between the different contexts.  

Taking the integral with respect to the recognition dimension would yield a univariate 

signal detection model for source memory.  In this particular example, the new 

distribution would have a mean equidistant between the means of the two old 

distributions. 

An easier way to look at this model is to look at a two-dimensional iso-likelihood 

contour plot instead of a three-dimensional bivariate plot (Ashby, 1992).  An iso-

likelihood contour plot can be created by passing a plane of constant probability (i.e., 

height) through the three-dimensional plot, as illustrated in Figure 3b.  The set of points 

on the plane that intercept a given bivariate curve form an ellipse.  If the bivariate curve 

has zero covariance, then the major and minor axes of the ellipse will be parallel to and 
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perpendicular to the coordinate axes.  If the covariance is zero and the variances on both 

dimensions are equal, then the ellipse will be a circle.  Figure 3c shows the iso-likelihood 

contours for the bivariate signal detection model in Figure 3a and 3b.  It is evident from 

the major axes of these ellipses that both old distributions have covariances such that 

items that have higher strength on the recognition dimension also tend to have a source 

strength that is further away from the new distribution.  As we will review below, such 

models have had success in fitting recognition and source memory performance jointly, 

and have outperformed DPSD models. 

Test covariance and global effects of learning.   

DeCarlo (2003b) and Hautus et al. (2008) fit a bivariate signal detection model 

and found covariances for the old distributions that were qualitatively similar to those in 

Figure 3a-c.  That recognition and source strength should be correlated in this fashion is 

intuitive if one thinks of these tests as assessing related portions of the same memory 

vector.  There is unavoidable variability in how well individual items are globally 

encoded.  Some items are well attended and encoded during study and hence yield higher 

strength on both recognition and source memory tests.  Other items are less well attended 

and encoded during study and yield a lower memory strength on both tests.  This would 

result in an item distribution for which the recognition and source memory dimensions 

are correlated.  Moreover, the direction of this correlation would be such that items that 

have more strength on the recognition dimension also tend to have more strength in favor 

of their true source as well.  Both of the old distributions in figure 3a-c exhibit such a 

correlation.   
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In both of the old distributions, the major axis of the ellipse (i.e., the longest 

possible line segment that can be enclosed within the eclipse) resides on the line that 

crosses that distribution’s mean and the mean of the new distribution.  That is, the 

direction in which the mean of the studied items has moved away from the mean of the 

unstudied items is the same direction that accounts for the most variability in that 

bivariate distribution (i.e., the major axis of that distribution’s ellipse).  Such a 

relationship, shown in Figure 4a, implies that the signal mean moves away from noise 

distribution in a direction that can be predicted by the covariance between the strengths 

on each test.  This pattern would indicate that global memory factors, such as attention or 

general item difficulty, affect all areas of the memory vector at the same proportional 

rates.  That is, each dimension in the vector has an equal probability of being encoded 

faithfully, regardless of whether that dimension includes information relevant to source 

discrimination or item recognition.  However, this probability does vary from trial to trial, 

as evidenced by the presence of nonzero covariance. 

Test covariance and test selectivity   

If, however, there are factors that selectively enhance (or impair) memory on one 

test and not the other (i.e., factors that have differential effects on different regions of the 

memory vector), then the signal mean would move in a different direction than would be 

predicted by the covariance.  Such a relationship, shown in Figure 4b, would suggest that 

there are selective factors that have disproportional effects on each test.  For example, it 

is well known that word frequency affects item recognition (e.g., Benjamin, 2003; 

Glanzer & Adams, 1990) but the case for source recognition is less clear (Guttentag & 

Carroll, 1994; Marsh, Cook, & Hicks, 2006).  To the extent that a factor can selectively 
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enhance (or impair) detection accuracy on one test and not the other, then the mean of the 

old distribution would move away from the noise distribution in a direction other than the 

one described by the major axes of its ellipse.  The bivariate model presented here can 

directly evaluate this hypothesis about the nature of covariance in the signal distribution 

and compare it to predictions derived from a perspective assuming global effects of 

learning.  

Manipulations of memory and global accounts of learning and forgetting  

We now at long last return to the question of central interest here—how the path 

towards establishing memory taken during learning resembles and differs from the path 

taken during forgetting.  The two experiments reported here employ a manipulation of 

learning (Experiment 1) and forgetting (Experiment 2) and investigate whether the 

movement of distributions reflects global or selective influences.  These manipulations 

allow us to trace the effects of these manipulations with respect to the axis emanating 

from the noise distribution.  Figure 4c shows the case where increases (or decreases) in 

memory strength continue along the direction predicted by the covariance.  Figure 4d, on 

the other hand, shows the case in which the means move in a direction not predicted by 

the covariance, but nonetheless increase (or decrease) at the same proportional rate for all 

levels of the experimental manipulation.  Finally, Figure 4e shows the case where the 

means are not predicted by the covariance and the proportional rate is different at each 

level of the experimental manipulation.  In this model, a variable might affect item 

recognition more than source memory (for example) in one portion of the range and 

source memory more than item recognition in a another portion of the range.  
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In the experiments presented here, all of these models are fit to the data and the 

more flexible models (e.g., Figure 4e) are tested as to whether they provide a better fit 

than the less flexible models (e.g., Figure 4c and 4d).  The goal of Experiment 1 is to fit a 

multivariate model to individual subject data, test its basic assumptions, evaluate the 

effects of a manipulation of learning on the model parameters, and compare it to the 

DPSD benchmark (Yonelinas, 1994, 1999) that is an alternative and still widely used 

model of source recognition performance. 

Experiment 1 

This experiment sought to investigate how well the multivariate signal detection 

model is able to fit individual participant’s recognition and source memory data and to 

compare those fits with the fits of the DPSD model.  The fits were compared using the 

Akaike Information Criterion (AIC), which provides a goodness of fit measure that can 

be compared across non-nested models with different numbers of parameters.  Subjects in 

this experiment engaged in both an item recognition (item memory) and source memory 

task for previously studied words. 

This experiment also sought to investigate the relationship between recognition 

memory and source memory within the bivariate model.  A study time manipulation was 

included to experimentally manipulate the strength of various items.  To the extent that 

memory is strengthened globally by additional encoding, the proportional increase of the 

average item’s strength on each test should be the same for items encoded better (i.e., 

items given more study time) and items encoded less well (i.e., items given less study 

time).  This would be instantiated in the bivariate model by the means of the distributions 

of different levels of study time all moving away from the noise distributions along the 
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same vector.  That is, the means should all fall on a single line, and that line should cross 

the mean of the noise distribution (see Figures 4c and 4d).  Alternatively, if additional 

study time differentially affects retention of stimulus characteristics important for item 

memory and source memory, then the direction that the means move away from the noise 

distribution would change at higher levels of study time, and they would not fall on the 

same line (Figure 4e).   

Method 

Participants 

Participants were 49 undergraduates enrolled in a psychology course at the 

University of Illinois at Urbana-Champaign. 

Materials and Procedure 

Each participant studied 120 words presented one at a time on a computer screen.  

Half of the words were presented on the left side of the screen and the other half on the 

right side of the screen.  One-third of the study words (20 in each location) were 

presented for 500 msec (weak encoding), one-third were presented for 3000 msec 

(medium encoding), and the remaining third were presented for 5000 msec (strong 

encoding). The order of presentation was pseudo-random with the constraint that no more 

than four words in a row could appear on the same side of the screen or for the same 

duration.  Participants were instructed to try to remember each word and the location it 

was presented in for a later memory test. 

The test consisted of all 120 studied words and 120 novel words.  Each test item 

was presented by itself in the center of the screen.  For each test item, participants first 

had to make a recognition judgment.  The question ―Was it studied?‖ appeared above the 
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test item and a 1 to 5 scale appeared below the test item, with 1 labeled ―sure new‖ and 5 

labeled ―sure old.‖  Once the participant made a response on the recognition test, they 

were asked to make a source judgment on the same test item.  The question ―Where was 

the word on the screen?‖ then appeared above the test item and a 1 to 5 scale appeared 

below the test item with 1 labeled ―sure left‖ and 5 labeled ―sure right.‖  Participants 

were instructed prior to the test phase that if they think or know that a test item was not 

studied they should respond with the middle response on the scale for the latter question 

(i.e., the ―3‖).  The presentation of test items was pseudo-randomized with the constraints 

that no more than four test items from the same studied location or duration or three 

novel test items appeared in a row. 

Model Comparisons 

Both the bivariate signal detection model and the DPSD model were fit for each 

participant simultaneously to both memory tasks using maximum likelihood estimation.  

A formal description of the models and of the fitting procedure can be found in the 

Appendix.  Both models were fit with all parameters being free to vary (full models) and 

with parameters constrained to either be particular values or equal to other parameters 

(reduced models).  The AIC was used to compare reduced and full models to determine if 

allowing a particular parameter to vary reliably improved the fit.  The best fitting 

bivariate signal detection and DPSD models were then compared to each other using the 

AIC statistic.  The models and their varying restrictions are summarized in Table 1, and 

described below. 

Multivariate models.  For the bivariate signal detection model, the full model 

allowed all the means and variance-covariance matrices of the 2 (location) X 3 (study 
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duration) old distributions to vary freely (the new distribution was constrained to be the 

z-distribution with mean (0,0) and variance-covariance equal to the identity matrix I).  

The various reduced models imposed constraints on either the means or the variance-

covariance matrices or both. 

There were four different levels of constraint for the means.  The full (least 

reduced) model allowed the means to vary freely.  The three reduced models all 

constrained the means of the three old distributions from the same location to lay on the 

same vector moving away from the new distribution mean (see Appendix).  The most 

reduced model constrained the means of the same duration but different locations to be 

the same distance from the new distribution and for the vector for each location to form 

the same angle with the item recognition axis but in opposite directions.  That is, the 

means from the same duration but opposite locations had the same value of recognition 

strength but additive inverse source strength.  The next most reduced model constrained 

the vectors but allowed each distribution’s distance from the new distribution to vary 

freely.  Finally, the last reduced model in terms of the means constrained the means to 

fall on a vector for each location, but allowed the direction of those vectors to vary freely. 

These four levels of mean constraints were fully crossed with two levels of 

covariance restrictions, yielding eight total models.  The full model allowed the variance-

covariance matrices of the signal distributions to vary freely.  The reduced model 

constrained the variance-covariance matrix such that the direction of the major axes of 

the ellipse was the same as the line going from the mean of the new distribution to that 

distribution’s mean.  That is, the direction that accounts for the greatest variance in the 
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distribution was constrained to be the same as the direction in which the mean of that 

distribution has ―moved away‖ from the new distribution.   

Dual-process models.  There were three different sets of R and d parameters—one 

set for each location and study duration.  The various reduced models constrained those 

parameters within each set, but never constrained the parameters to be equal across items 

of different durations.  The full model had a separate R parameter and a separate d 

parameter for each item type (left vs. right) during each test type (recognition vs. source).  

There were three different reduced models for both the R and d parameters.  For each 

parameter type, one constrained model forced that parameter to be the same for both test 

types but allowed it to vary independently for each location.  Another reduced model 

constrained that parameter to be the same for each location but allowed it to differ for the 

two test types.  Finally, the strictest model constrained both parameters to be the same for 

all item types and test types within a study duration.  This yielded four different levels of 

constraint for both the R and the d parameters.  Fully crossing all levels of R constraint 

and d constraint yielded 16 different models that were fit.  These relaxed models afford 

the DPSD more flexibility than theorists typically allow it—e.g., recollection differing for 

items from a different source and depending on the test format—but we wanted to give 

the model every opportunity to fit the data.  The most flexible model had a different R 

and a different d parameter for every old item type on each test.  Yonelinas (1999) 

specifically argues that d should be the same for all studied item types when the items are 

all equally memorable.  Likewise, there is no theoretical reason why R would differ for 

the exact same items on different tests, or differ for items that were studied for equivalent 
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time but in different locations.  Nonetheless, we allowed these parameters to vary freely 

to test possible variants of dual-process models. 

Results  

Prior to fitting the model to both tasks simultaneously, we examined the 

properties of the univariate fits of the models so as to confirm the effectiveness of the 

study time manipulation and to ensure that basic effects from the prior literature were 

replicated in our task and with our model-fitting algorithms. 

Univariate analysis of performance 

The mean parameter estimates for the univariate fits of both the UVSD and DPSD 

model can be found in Table 2.  For the UVSD model, da reliably increased from the 

weak condition to the medium condition for both the recognition task and source memory 

task (t(48) = 3.29,  t(48) = 2.63, respectively).  This indicates that the study time 

manipulation did have its desired effect.  However, there was no reliable increase 

between the medium and strong conditions (t(48) = .97,  t(48) = .05, for recognition and 

source memory, respectively).  Figure 5 shows the ROC plots and the group fit
3
 UVSD 

curves for both the recognition and source memory tasks.   

The DPSD model also found a reliable increase between the weak and medium 

word types but not the medium and strong word types, though this pattern only occurred 

for the R parameter in the source memory task (t(48) = 3.62, t(48) = .81, for the weak vs. 

medium and medium vs. strong comparisons, respectively).  The increase in the DPSD 

parameters for the recognition test was not statistically reliable between the weak and 

medium conditions (t(48) = 1.54 & t(48) = .33, for the d and R parameters, respectively) 

                                                           
3
 All parameter estimates and statistical tests done on those parameter estimates were conducted on an 

individual participant basis.  The group-fit ROC curves are plotted for clarity of presentation.   
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or between the medium and strong conditions (t(48) = 1.05 & t(48) = 1.06, for the d and 

R parameters, respectively).  However, there was a reliable increase between the weak 

condition and the strong condition for the d parameter (t(48) = 2.92) and the increase 

between those conditions for the R parameter was marginally reliable (t(48) = 1.76, 

p=.08), indicating the DPSD fits also support the notion that the memory strength 

manipulation did have the desired effect.  The ROC plots and the group-fit DPSD curves 

for both the recognition and source memory tasks are shown in Figure 6. 

Bivariate Model Fits 

The mean AIC values across participants for the various versions of the bivariate 

signal detection model that were fit are presented in Table 3.  The best fitting model was 

the one with the fewest constraints—both the means and the covariances were allowed to 

vary freely.  Figure 7 shows the fit of the best fitting model using the median parameter 

estimates across participants. 

The main focus of this experiment was to evaluate whether what the fitted 

parameters from the multivariate model indicate about the relationship between study 

time and learning.  One possibility was that the average item’s strength on each test 

would increase at the same proportional rate as memory improves.  If this were the case, 

then all the means from the same source would fall on the same line that crosses the noise 

distribution.  The best fitting model however, allowed the means to vary freely from this 

line.  The models that constrained the means to be on the same line did not fit the data as 

well.  This suggests that the effects of encoding are not equivalent across all areas of the 

memory trace.  Rather, it appears that recognition strength benefits most from the initial 

encoding, and source strength benefits most from the increases in study time (Figure 7).  
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This result is consistent with the ―one-shot‖ hypothesis of Malmberg and Shiffrin (2005) 

and will be discussed further in the General Discussion.  In addition, allowing the 

variance-covariance matrix to vary freely fit better than when that matrix was 

constrained.  This suggests that there are factors that affect the strength on one task but 

not the other.   

DPSD model fit simultaneously 

The mean AIC values for each of the DPSD models fit are shown in Table 4.  The 

best fitting model was the model with the same R parameter for each study location but a 

different R parameter for each test.  This model implies that words studied in each 

context are recollected at the same rate, on average, but that the probability of 

recollection differs depending on the type of test.  This model did not do as good a job 

fitting the data as the bivariate model, indicating that recognition and source memory are 

best fit by a continuous strength model, rather than a mixture of a strength and threshold 

model.  This is inconsistent with the theorizing of theories that suggest that familiarity (or 

recollection) should be the same for equally studied items and for the same item on two 

different tests. 

Discussion 

This experiment sought to assess the effect of increasing study time on the 

memory representation underlying performance on recognition and source memory.  The 

DPSD model fit simultaneously to both tasks failed to fit the data as well as the bivariate 

model.  This supports the notion that recognition and source memory are best fit by a 

continuous strength process.   
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The results of the bivariate modeling do not support the hypothesis that the signal 

underlying recognition and the signal underlying source memory increase proportionately 

and instead indicate that recognition and source strength benefit differentially at different 

levels of encoding.  If one were to fit the best fitting line to the three means of items from 

the same study context (Figure 7), that line would intercept the item recognition axes well 

above the mean of the noise distribution.  This result suggests that the source strength 

benefits most from increases in study time, and that recognition strength benefited most 

from the initial encoding.  One possibility is that participants are using the extra study 

time to better associate the item with its location.  This explanation is consistent with the 

notion that encoding does not affect all areas of the memory trace equally, but rather, that 

participants deliberately attend to some aspects of the stimulus over others.  

Experiment 2 

Experiment 1 found that as the strength of an item’s encoding is increased, the 

memory strength on each test also increases, though not at the same proportional rate.  

This finding is inconsistent with the idea that increases in study time globally strengthen 

the entire memory trace.  If encoding strengthened all areas of the memory trace globally, 

then we would expect the means of studied item distributions to move away from the 

mean of the noise distribution along a straight line.  This was not the case in Experiment 

1 when we used a study time manipulation to differentially strengthen the items.   

Experiment 2 sought to manipulate item strength using a forgetting manipulation.  

This allowed us to evaluate whether the effects of forgetting mirror the effects of study 

time: If so, source performance should decrease more rapidly at low levels of forgetting, 

and item performance should show a rapid decline later.  However, to the extent that 
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forgetting, unlike study time, affects a memory trace globally, we would expect the 

means of studied items that are more likely to have been forgotten to move towards the 

mean of the noise distribution along a straight line.   

Method 

Participants 

Participants were 66 undergraduates enrolled in a psychology course at the 

University of Illinois, Urbana-Champaign. 

Materials and Procedure 

Materials were the same as Experiment 1.  The procedure was also the same as 

Experiment 1, except that all items were studied for two seconds and there were three 

separate test phases.  Each test queried a random but mutually exclusive third of the study 

words (20 from each location).  The ―strong‖ words were tested immediately after the 

study phase.  For the ―medium‖ words participants were asked to complete as many 2-

digit addition and subtraction problems as they could in 20 seconds immediately prior to 

the second study phase.  For the ―weak‖ words participants were asked to solve as many 

of those math problems as they could in 180 seconds immediately prior to the third and 

final test phase.  The math problems consisted of two randomly generated integers each 

ranging from 10 to 99 and a randomly selected ―+‖ or ―-― sign presented on a computer.  

For the subtraction problems, the two integers were sorted such that the correct answer 

was never negative. 

Model Simulations 

The same models were fit as in Experiment 1.  The fitting algorithm failed to 

achieve good fits for two of the participants.  The best fits for those participants were 
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more than 6 standard deviations worse than the other 64 participants, so the bivariate fits 

for those two participants were not included in the results below. 

Results  

Univariate analysis of performance 

The mean parameter estimates for the univariate fits of both the UVSD and DPSD 

model can be found in Table 5.  For the UVSD model, da reliably decreased from the 

strong condition to the weak condition for both the recognition task and source memory 

task (t(65) = 2.10,  t(65) = 2.36, respectively) indicating that the memory strength of the 

items decreased on both tests as the items were forgotten.  Figure 8 shows the ROC plots 

and the group fit UVSD curves for both the recognition and source memory tasks.   

The DPSD model also detected a reliable decrease from the strong to the weak 

condition, but only in the R parameter during the recognition task (t(65) = 3.08).  Neither 

the decrease of the d parameter during the recognition task nor of the R parameter during 

the source memory task were statistically reliable (t(65) = .20, t(65) = .86, respectively).  

This pattern of results appears to indicate that recollection is more susceptible to 

forgetting than familiarity and supports the notion that the experimental manipulation led 

to forgetting.  The ROC plots and the group fit DPSD curves for both the recognition and 

source memory tasks are shown in Figure 9. 

Bivariate Model Fits 

The mean AIC values across participants for the various versions of the bivariate 

signal detection model that were fit are presented in Table 6.  Unlike the results of 

Experiment 1, the model that allowed the means to vary freely did not provide a better fit 

than the model that constrained the means to fall on the same line.  This result is 
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consistent with the notion that forgetting occurs globally across the memory trace.  That 

is, memory strength decreased at a proportional rate across the two tasks.  As items were 

weakened through forgetting, the mean of the corresponding distribution moved along a 

straight line towards the mean of noise distribution.  Figure 10 shows the median fit of 

the best fitting model. 

As in the previous experiment, the models that allowed the variance-covariance 

matrix to vary freely fit better than when that matrix was constrained.  This again 

suggests that there are factors that affect the strength on one task but not the other.  This 

is in contrast to the main finding of this experiment, that forgetting acts globally across 

the memory trace.  Forgetting affects the strength on both tests at a proportional rate, but 

there are still other factors (presumably the same as those elicited across heterogeneous 

items and encoding opportunities in experiment 1) that affect the strength on one test 

differently than the strength on another test.      

DPSD model fit simultaneously 

The mean AIC values for each of the DPSD models fit are shown in Table 7.  The 

best fitting model was the same as in Experiment 1; the model with the same R parameter 

for each study location but a different R parameter for each test.  This model implies that 

words studied in each context are recollected at the same rate, on average, but that the 

probability of recollection rate differs depending on the type of test.  The best fitting 

DPSD model once again failed to fit the data as well as the best fitting bivariate model, 

though overall the DPSD model fit the data better in this experiment than in the previous 

experiment.  

Discussion 
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Experiment 1 found that the effect of strengthening items, through the use of a 

study time manipulation, affected the strength of those items on the two memory tests at 

different proportional rates.  This experiment investigated whether the effects of 

weakening items, through the use of a forgetting manipulation, affected the strength of 

those items at the same proportional rate for the two memory tests.  The results of the 

bivariate modeling support this hypothesis and suggest that forgetting occurs globally 

across the memory trace.  The model that constrained the decreases in the source mean to 

be a constant proportion of the decreases in the recognition mean (i.e., for the means to 

fall on a straight line that crosses the origin) provided a better fit than the model that 

allowed the means to vary freely.  This is consistent with the view that the amount of 

forgetting in areas assessed by the source test is a constant proportion of the amount of 

forgetting that occurs in areas assessed by the recognition test. 

Once again, the bivariate model did a better job accounting for the data than did 

the DPSD model.  This result, consistent across the two experiments and in other recent 

work (Hautus et al., 2008), supports the viability of a continuous strength model as an 

explanation for recognition and source memory performance. 

General Discussion 

The experiments presented here explored similarities and differences between 

learning and forgetting by using a continuous strength model to simultaneously account 

for performance on tests of recognition memory and tests of source memory.  The model 

developed here is grounded in the source monitoring framework that suggests that an 

item’s memory strength depends upon what aspects of memory are being queried.  Items 

that are learned equally well may yield equal memory strengths on one memory test, but 
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entirely different memory strengths on a different test.  The bivariate model fit in the 

experiments presented here found that items that were studied for equal durations but in 

different locations had approximately equal memory strength on the recognition task, but 

nonetheless elicited well above-chance source memory discrimination performance.  In 

the multivariate formulation, this can occur because the areas of memory that are 

assessed for the recognition test contain similar information for both types of studied 

words, whereas the areas of memory assessed for the source test contain very different 

information for the two types of studied words. 

The bivariate model’s ability to fit both tasks simultaneously, and to do so better 

than the DPSD model, goes against the notion that source memory performance depends 

critically upon recollection and that recollection differs qualitatively from strength in that 

it is a threshold process (cf. Wixted, 2007).  By allowing an item’s strength to depend 

upon what aspect of that memory trace is being tested, source memory performance can 

be well described by a familiarity or strength process.  This basic assumption of the 

bivariate model presented here follows directly from the source monitoring framework.  

According to that framework, the type of evidence that is assessed in memory depends 

upon what is relevant to the test question.  Items that are learned equally well can yield 

drastically different levels of evidence if the test is one that queries aspects of memory 

where the items differ, such as a source memory test.   

Properties of Bivariate fits 

The bivariate model enabled us to evaluate the rate at which the average item’s 

strength changed proportionately on the two tests as memory for the stimuli was 

strengthened (Experiment 1) or weakened (Experiment 2).  The results of Experiment 1 
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revealed that the rate at which item strengths increase on the two tests does not remain 

constant as the study time is increased.  Initially, strength increases most along the 

recognition dimension.  Then, as participants are given more time to study the items, the 

rate at which the strength increases across the two tests changes in favor of the source 

memory dimension.  Moreover, this latter direction of movement appears to be roughly in 

the same direction as predicted by the major axis of the ellipse (Figure 7), indicating that 

the same factors that underlie item-to-item variability in encoding efficacy promote 

enhancements in source and item memory, but only after an initial period of study time 

for which item recognition increases disproportionately.   

This pattern may be consistent with the one-shot hypothesis of Malmberg and 

Shiffrin (2005).  According to that hypothesis, all the information that will be stored 

about the context of a study episode is stored in ―one shot‖ at the initial presentation and 

all subsequent study time is spent encoding the ―content‖ of the study item.  While this 

hypothesis appears at first glance to be the opposite of what we found, it is worth noting 

that Malmberg and Shiffrin (2005) conceptualize context as the situational aspects of a 

study episode that are usually outside the focus of attention during deliberate study.  

Since participants were told to remember the location of the word while they studied that 

word, it is more appropriate to consider location in our experiments as part of the 

―content‖ of the item.  Malmberg and Shiffrin (2005) model context in REM (Shiffrin & 

Steyvers, 1997) as a section of the memory trace that is unique to each particular 

encoding episode (but that does not get better encoded as study time increases).  Such a 

model can account for why recognition strength increases initially more so than predicted 

by the covariance, but later with more study time, strength on both tests appear to move 
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in the direction predicted by the covariance.  The unique context information for each 

word aids in making recognition judgments for those words, but is of little use in 

deciding where that word was on the screen.  This initially boosts performance 

disproportionately in favor the recognition test.  Since that context information does not 

benefit from more study time however, later increases in strength from additional study 

tend to move in the direction predicted by the covariance. 

The results of Experiment 2 are quite different than Experiment 1.  When item 

strength was weakened through forgetting, strength on both the recognition and source 

memory tests decreased by the same proportional amount.  That is, the strength of the 

average item moved in a straight line towards the mean of the noise distribution as items 

are forgotten.  This suggests that forgetting occurs globally across the memory trace and 

does not differentially affect some areas more than others.  It also serves to allay concerns 

that the results of the previous experiment were due to the more flexible model 

overfitting the data.  This experiment shows that the model where the means fall on a 

straight line is flexible enough to provide the best fit to the data. 

Overall, the bivariate model was able to account for performance on both 

recognition memory and source memory tests, outperformed the DPSD model, and 

allowed us to explore the relation of recognition strength to source strength.  The results 

were consistent with the one-shot hypothesis that initially there are factors the 

preferentially aid recognition memory and later increases in study time affect both 

recognition and source memory strength, but that forgetting is more egalitarian in its 

effects on the memory trace. 
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Table 1 

Versions of the bivariate signal detection and DPSD models that were fit 

 

Bivariate Model  Constraint on Means Constraint on Covariance 

 

Full None None 

SameLineFullCovariance Means on Line None 

SameLine&AngleFullCovariance Means on Line, same angle None 

SameMeansFullCovariance Same means, inverse source None 

FullSameVector None Cov constrained 

SameLineSameVector Means on Line Cov constrained 

SameLine&AngleSameVector Means on Line, same angle Cov constrained 

SameMeanSameVector Same means, inverse source Cov constrained 

 

DPSD Model Constraint on R Constraint on d` 

 

Full None None 

SameDitemFreeR None d same for both locations 

SameDtestFreeR None d same for both tests 

SameDFreeR None d same for both locations and tests  

FreeDSameRitem R same for both locations None 

SameDitem&Ritem R same for both locations d same for both locations 

SameDtest&Ritem R same for both locations d same for both tests 

SameD&Ritem R same for both locations d same for both locations and tests  

FreeDSameRtest R same for both tests None 

SameDitem&Rtest R same for both tests d same for both locations 

SameDtest&Rtest R same for both tests d same for both tests 

SameD&Rtest R same for both test d same for both locations and tests 

FreeDSameR R same for both locations and tests None 

SameDitem&R R same for both locations and tests d same for both locations 

SameDtest&R R same for both locations and tests d same for both tests 

SameD&R R same for both locations and tests d same for both locations and tests 
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Table 2 

Mean parameter estimates for each level of study time for Experiment 1 

 

 UVSD DPSD 

Test mu sig da d  R 

 

Old vs. new 

Weak  1.25 1.62 .87 .48 .24 

Medium 1.39 1.59 1.02 .60 .25 

Strong 1.38 1.49 1.07 .67 .28 

 

Source A vs. B 

Weak  .76 1.06 .72 0
a
 .17 

Medium .99 1.16 .93 0
a
 .24 

Strong .98 1.05 .93 0
a
 .26 

 

Note. These are the means of the parameters of the univariate models estimated 

individually for each participant.  ―Old vs. new‖ represents the comparison of old to 

novel items during the recognition task.  ―Source A vs. B‖ represents the comparison of 

the two different sources during the source memory task.  a: d between the two source 

distributions is constrained to be 0 (as in Yonelinas [1999]). 
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Table 3 

Mean AIC values for various model fits of the Bivariate Signal Detection Model in 

Experiment 1 

 

Constrained Means 

Constrained Cov Full Same Line Same Line and Angle  Same Means 

 

Full 409 411 701 718 

Same Vector 957 964 813 828 

 

Note. Lower values indicate better fit.  The best fitting model is indicated in bold. 
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Table 4 

Mean AIC values for various model fits of the DPSD Model in Experiment 1 

 

Constrained d’ 

Constrained R Full Same d’ for items  Same d’ for tests Single d’ 

 

Full 447 451 452 456 

Same R for items 442 446 446 452 

Same R for tests 459 463 465 470 

Single R parameter 458 463 466 486 

 

Note. Lower values indicate better fit.  The best fitting model is indicated in bold.  
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Table 5 

Mean parameter estimates for each level of study time for Experiment 2 

 

 UVSD DPSD 

Test mu sig da d  R 

 

Old vs. new 

Weak  1.84 2.45 1.01 .58 .28 

Medium 1.86 2.37 1.07 .55 .33 

Strong 1.98 2.14 1.15 .56 .38 

 

Source A vs. B 

Weak  .81 1.06 .72  0
a
 .13 

Medium .82 1.05 .80  0
a
 .13 

Strong . 99 1.19 .88  0
a
 .16 

 

Note. These are the means of the parameters of the univariate models estimated 

individually for each participant.  ―Old vs. new‖ represents the comparison of old to 

novel items during the recognition task.  ―Source A vs. B‖ represents the comparison of 

the two different sources during the source memory task.  a:d between the two source 

distributions is constrained to be 0 (as in Yonelinas [1999]). 
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Table 6 

Mean AIC values for various model fits of the Bivariate Signal Detection Model in 

Experiment 2 

 

Constrained Means 

Constrained Cov Full Same Line Same Line and Angle  Same Means 

 

Full 383 379 671 679 

Same Vector 484 485 1427 2627 

 

Note. Lower values indicate better fit.  The best fitting model is indicated in bold. 
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Table 7 

Mean AIC values for various model fits of the DPSD Model in Experiment 2 

 

Constrained d’ 

Constrained R Full Same d’ for items  Same d’ for tests Single d’ 

 

Full 387 394 393 401 

Same R for items 384 391 390 399 

Same R for tests 393 400 400 413 

Single R parameter 395 402 408 424 

 

Note. Lower values indicate better fit.  The best fitting model is indicated in bold. 
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Figure Captions 

 

 

Figure 1 

a) Equal-variance model of recognition. 

Figure 2 

a) ROC curves predicted by equal-variance (solid) and unequal-variance 

(dashed) strength models. 

b) z-transforms of ROC curves predicted by strength models 

c) ROC curve predicted by DPSD model 

d) z-transform of ROC curve predicted by DPSD model 

Figure 3 

a) Bivariate signal detection model 

b) Horizontal plane passing through bivariate model 

c) Iso-likelihood contours of bivariate model 

Figure 4   

Potential patterns of means and covariance fits. 

Figure 5 

UVSD fits to the recognition and source memory group data 

Figure 6 

 DPSD fits to the recognition and source memory group data 

Figure 7 

Iso-likelihood contour plot of the best fitting bivariate model in Experiment 1.  

Parameters used were the median parameter values across participants 

Figure 8 

UVSD fits to the recognition and source memory group data 

Figure 9 

DPSD fits to the recognition and source memory group data 

Figure 10 

Iso-likelihood contour plot of the best fitting bivariate model in Experiment 2.  

Parameters used were the median parameter values across participants 
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Figure 1 
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Figure 3 
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Figure 5 
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Figure 6 
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Figure 7 

 



 

 57 

Figure 8 
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Figure 9 
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Figue 10 
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Appendix 

All models were fit by maximum likelihood estimation.  Each model predicted the 

proportion of each response on the confidence scale for each item type, given a set of 

parameters.  The multinomial likelihood function was then used to calculate the 

likelihood of these predicted proportions given the data (i.e., the actual frequency of each 

response).  Specifically the multinomial likelihood function is: 
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Where Lw is the likelihood for the w
th

  word type, θrsw is the predicted proportion 

of words of the w
th

 word type getting both the r
th

 rating on the recognition test and the s
th

 

rating on the source memory test.  Xrsw is the actual frequency of the r
th

 and the s
th

 rating 

for the w
th

 word type.  And Nw is the total number of items there were of the w
th

 word 

type.  The joint likelihood of a model fit to all the different word types (i.e., studied-left 

and studied-right for each duration and new items) is the product of the likelihoods for 

each of those word types.  
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Bivariate Model 

The bivariate model predicts the proportion of a response, θrsw, is the volume 

under a bivariate curve that is bound by a square area that is defined by an upper and 

lower criterion on each of the two dimensions.  Specifically: 
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where N(μw, Σw, x, y) is a normal distribution with mean vector μw and variance-

covariance matrix Σw.  The integrals are calculated with respect to both dimensions, x and 

y, and are bounded by the criteria cr-1 and cr on the recognition dimension and cs-1 and cs 

on the source dimension.  R and s both range from 1 to Nratings and c0 = -∞ and cNratings = 

+∞. 

Given the parameters μw and Σw for all w, the likelihood of a participant’s data 

can be calculated by computing all predicted proportions, θrsw, using equation A2 and 

then calculating the likelihood using equation A1.  The set of parameters that maximized 

the likelihood for a given data set was found using the mle function in MATLAB, which 

instantiates a version of the Simplex search algorithm. 

Each μw vector consists of two parameters and each Σw consists of three 

parameters.  In order to measure (and constrain) the angle the μw vector makes with the 

recognition axes, the means on both dimensions were defined in polar coordinates.  This 

allowed for the μw vector to be defined by an angle, γw, and a length, rw.  The vector μw 

then becomes: 
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where rw*cos(γw) is the mean on the recognition dimension for the w
th

 word type and 

rw*sin(γw) is the mean on the source dimension for that word type. 

Likewise, the variance-covariance matrix Σw was defined by its spectral 

decomposition (i.e., by decomposing it into two eigenvalues and two eigenvectors).  

Since a single angle is sufficient to define both eigenvectors, this allowed for the 

variance-covariance matrix to be defined in terms of two eigenvalues, λw1 and λw2, and 
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the angle, θw, that the major axis of that distribution’s ellipse forms with the recognition 

axis.  Specifically: 

222111 '' wwwwwww eeee    

where λw1 is the larger of the two eigenvalues and the eigenvectors, ew1 and ew2, are of 

unit length and defined by the parameter θw as follows: 
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ew1 and ew2 also represent the direction of the major and minor axes of the ellipse for w
th

 

word type, respectively.  The length of those axes is proportional to the eigenvalues that 

correspond to those eigenvectors (and inversely proportional to the height of the iso-

likelihood plane that was used to form the iso-likelihood contour plot). 

DPSD fit simultaneously to both tasks 

The DPSD model makes specific predictions for the recognition task and the 

source memory task independently.  Specifically, the probability of endorsing an item on 

the recognition task is:  

P( X > cr | studied-left)   =  R  + (1 – R)  * Φ(d – cr)                      

P( X > cr | studied-right)  =  R + (1 – R)  * Φ(d – cr)     

P( X > cr | new)                =                         Φ( – cr )     

where X is the response variable, cr is the r
th

 criterion, Φ is the cumulative normal 

distribution , R is the probability of an item being recollected, and d is the distance 

between the means of the old distributions and the mean of the new distribution.  The 

probability of endorsing an item on the source task is: 

P( X > cs | studied-left)    =         (1 – R)  * Φ(d – cs)                      
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P( X > cs | studied-right)  =  R + (1 – R)  * Φ(d – cs)     

P( X > cs | new)                =                         Φ( – cs )     

where the scale is arbitrarily defined as higher values indicating more evidence for 

―rightness‖ and lower values indicating more evidence for ―leftness.‖  Using the 

equations, it is possible to calculate the predicted proportion of each response on each test 

independently.  

)|()|( 1 wcXPwcXP rrwr    

)|()|( 1 wcXPwcXP sssw    

where θr•w is the proportion of the w
th

 word type given the r
th

 rating on the recognition 

test collapsing across all responses on the source memory test.  Similarly, θ•sw is the 

proportion of the w
th

 word type given the s
th

 rating on the source memory test collapsing 

across all responses on the recognition test.   

However, in order to use the AIC statistic to compare models, the models must be 

fit to the same data.  Some assumption then had to be made to get the DPSD model to be 

able to predict the proportion, θrsw, of responses of the r
th

 rating on the recognition test 

and the s
th

 rating on the source test simultaneously.  It was assumed that the proportion of 

responses on one test were statistically independent of the proportion of responses on the 

other test
4
, such that: 

swwrrsw    

                                                           
4
 A different assumption would be to assume that recollected items always are always given the highest 

confidence correct rating on both tests (i.e., all R responses go into a single cell in the 5 (recognition) X 

5(source) response matrix for each word type) was also fit to the data from experiment 1.  This assumption 

yielded markedly worse fits than the model that was used. 
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As with the bivariate model, given a set of parameters the likelihood for a 

participant’s data was calculated by computing all predicted proportions, θrsw, using 

equation A2 and then calculating the likelihood using equation A1.  The parameters for 

the DPSD model are R and d for the different word- and test-types and the criteria on 

each test.   

 

 

 


