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Abstract 

Cognitive systems, whether human or engineered, must often reason from and act on probabilistic 
information, and many of their decisions are therefore inescapably uncertain. Such probabilistic 
decision making is the purview of the two approaches reviewed in this chapter: Bayesian analysis and 
the theory of signal detection (TSD). Bayes' theorem provides a normative means of updating 
probabilistic beliefs in light of new data, and modern Bayesian techniques allow decision makers to model 
joint distributions of large sets of variables. For cases in which a human decision maker must make 
unaided Bayesian inferences, cognitive psychology has developed and validated simple guidelines for data 
representation to optimize performance. TSD models the transformation of probabilistic assessments 
into discrete diagnoses, dissociating the representation of evidence from the decision rules applied to 
that evidence and establishing normative criteria against which the performance of a cognitive system 
can be measured. Together, Bayesian and signal detection models offer methods of making, modeling, 
and assessing judgment and decision making under uncertainty, for both human and engineered agents. 

Key Words: decision making, uncertainty, Bayes' theorem, Bayesian networks, receiver operating 
characteristic (ROC) 

The world as we experience it is inherently proba­
bilistic, and every decision maker, human or engineered, 
contends with uncertainty. Adaptive behavior 
requires that we update our beliefs as imperfect 
information accumulates and, eventually, that we 
render from our imperfect beliefs a choice of action. 
These two problems are the domain of Bayes' theo­

rem and the theory of signal detection (TSD), respec­
tively. These methodological tools, widely applicable 
in cognitive engineering and related domains, pro­
vide frameworks for descriptive models of human 
perception and cognition, and allow us as well to 

establish normative criteria for decision-making 
tasks, providing benchmarks against which we can 
judge a decision maker's performance and guidelines 
by which we can design artificial agents with opti­
mal decision-making strategies. Bayesian analysis 

can be applied, furthermore, to draw inferences or 
make predictions about a human operator's cogni­
tive ability or state (e.g., Jipp, Badreddin, Abkai, 
& Hesser, 2008; Liang, Lee, & Reyes, 2007) and 
even to predict the behavior of immensely com­
plex socio-technical systems (e.g., Trucco, Cagno, 
Ruggeri, & Grande, 2008), while TSD provides an 
array of performance measures that not only allow 
us to gauge a decision maker's performance but also 
to disentangle the agent's underlying ability to dis­
criminate or detect events from higher-level strategic 
aspects of performance (e.g., Craig, 1987; Meissner 
& Kassin, 2002; Vickers & Leary, 1983). Here we 
provide a brief overview of how these theories can 
be applied to problems in cognitive engineering and 
human factors. (For fuller tutorial presentations of 
Bayesian analysis, see Darwiche, 2009; Griffiths, 



Kemp, & Tenenbaum, 2008; Koller & Friedman, 
2009. For detailed presentations ofTSD, see Green 
& Swets, 1966; MacMillan & Creelman, 2005; 
Wickens, 2002.) 

Bayes' 1heorem and Bayesian Modeling 
Early efforts at automated reasoning in artificial 

intelligence aimed for a purely deductive system of 
inference, using logical rules to reason with certainty 
from a knowledge base to conclusions, but faltered 
on an inability to deal with inconsistent, contra­
dictory, or incomplete evidence (Darwiche, 2009). 
In response, researchers forewent the demand for 
deductive certainty, pursuing instead a method of 
probabilistic reasoning more robust, flexible, and 
considerably more similar to human reasoning than 
the unattainable deductive ideal (Pearl, 1988). The 
foundation of this alternative approach was Bayes' 
theorem, a well-known finding in probability theory 
that provides a normative means of updating proba­
bilistic hypotheses about the world. 

Named for the 18th century cleric by whom it 
was enounced (albeit in a different form than that 
currently familiar), Bayes' theorem gives the prob­
ability that a belief or hypothesis, H, is true given 
a set of evidence, E. Phrased differently, Bayes' 
theorem allows us to know how much our confi­
dence in hypothesis H should increase or decrease 
once we have seen the evidence E. By how much, 
for example, should a scientist's confidence in her 
theory increase once an experiment has yielded an 
outcome consistent with her predictions? By how 
much should an economic model's estimated risk 
of a recession increase upon incorporating new data 
that show a decrease in consumer spending? How 
much more or less certain should a doctor, or a deci­
sion support system, be of a lupus diagnosis after 
learning that the patient has a family history of the 
disease but has produced only borderline positive 
results on a screening test? 

In its familiar formulation, Bayes' theorem is: 

P(Hj£) = [P(ElH) X P(H)] I P(E). 

Here, P(H) is the prior probability or base rate 
of H, the probability that the hypothesis is true 
before we have collected any new information, and 
P(Hj£) is the posterior probability, the probability 
of H given evidence E. To ascertain the change in 
probability as a function of the new evidence E, two 
other parameters are necessary. P(ElH) is the likeli­
hood of E given H, and P(E) is the prior predictive 
probability or marginal probability of the evidence E. 

Thus we begin with a prior, update it in light of new 
information, and end with the posterior. That pos­
terior can then serve as the prior to be updated in 
our next round of data gathering. 

Treating the elements of Bayes' theorem as ran­
dom variables allows us to avoid a strong com­
mitment to point values that are usually highly 
uncertain, and allows us to draw conclusions from 
the changing shape and location of the posterior 
distribution rather than simply from a point esti­
mate of its central tendency. Because reasoning in 
psychology rarely involves point predictions, and 
because theories of decision making like TSD start 
with such distributions, this approach is well suited 
to cognitive modeling. Bayes' theorem tells us that 
the posterior probability distribution, the belief that 
we end with after taking into account new evidence, 
is a joint function of our pre-existing beliefs, as 
embedded in the prior, and the strength of the new 
evidence. The higher our pre-existing confidence 
in the hypothesis under consideration, the higher 
our posterior confidence. Conversely, our posterior 
confidence is inversely proportional to the marginal 
probability of the data themselves. If the pattern of 
evidence is highly likely whether or not H is true, 
then the observation of that evidence will do little 
to influence our posterior beliefs. In the extreme 
case that P(E) = 1, observing E has no influence at 
all on our beliefs, and P(Hj£) = P(H). 

As Equation 1 indicates, to calculate a posterior 
probability requires three pieces of information. 
Where do these come from? For some purposes, 
happily, the prior predictive probability P(E) can 
be treated as a normalizing constant and ignored. 
In comparing the relative posterior probabilities for 

·a pair of hypotheses H
1 

and H
2

, for example, we 
can calculate a likelihood ratio, (P(ElH) x P(H

1
))1 

(P(ElH) x P(H
2
)), dividing out P(E). Establishing 

the prior P(H) can be more problematic. One solu­
tion is to begin analysis with an uninformative prior, 
assuming that P(H) is distributed uniformly across 
the range of possible (or plausible) values. Doing 
this, the we assert no a priori belief about the likeli­
est value of P(H) at the outset of data collection. The 
posterior probability resulting from the each round 
of data observation, however, becomes the prior 
probability for the following round, and our pos­
terior probability distribution gradually approaches 
truth (Sivia & Skilling, 2006). As an alternative to 
using an uninformative prior distribution, we may 
choose a theoretically motivated informative distri­
bution. The advantage to this choice is that, if the 
assumed prior distribution is roughly correct, our 
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beliefs as encoded in the posterior distribution will 
approach truth more quickly than with an uninfor­
mative prior. The disadvantage is that, if the assumed 
prior distribution is wildly off the mark, more data 
will be necessary to correct for the false assumptions 
encoded in the prior, and our beliefs will approach 
truth more slowly. Interestingly, empirical data sug­
gest that human decision makers' implicit assump­
tions about the form of the prior distribution, as 
evidenced by explicit judgments of posterior prob­
abilities, are highly accurate across a range of very 
different contexts (Griffiths & Tenenbaum, 2006). 

The likelihood function P(El!-J), finally, is typi­
cally given by the statistical model under consider­
ation. To take a common example, consider a simple 
experiment of 10 coin flips to determine whether or 
not a coin is fair. Here, the hypothesis under con­
sideration is that the probability e of the coin land­
ing heads-up is 0.5, and the datum of interest is the 
number of heads, x, that results from the 10 flips. 
The likelihood function, P(x I e = 0.5), is therefore 
given by a binomial distribution with p = 0.5. In 
other cases, unfortunately, the likelihood function 
may be less obvious. This is especially true when 
our theory testing or inference requires not just that 
we weigh a single piece of evidence, but consider 
a complex pattern of multiple variables. However, 
such cases often lend themselves readily to a form of 
graphical Bayesian analysis, as discussed below. 

Bayesian Networks 
Often, we are interested not just in the relation­

ship between a single datum and hypothesis, but 
in the contingencies among many pieces of data 
and multiple measures. More technically, we wish 
to draw inferences about the joint distribution of 
multiple random variables. Bayesian network (BN) 
analysis (Pearl, 1988) provides a methodology for 
approaching such problems. A BN is a graph that, 
like any, comprises a series of nodes connected by 
edges. More specifically, a BN is a form of directed 
acyclic graph, where the term directed means that 
connected nodes form ordered pairs, and acyclic 
means that a path leaving any given node can­
not lead back to the same node. Because edges are 
directed, one node within each connected pair can 
be designated the parent and the other designated 
the child. Within a BN, each node represents a ran­
dom variable, and every child node is characterized 
by a conditional probability distribution specifYing 
the probability of the node's potential values con­
tingent on the value of its parents. The root nodes, 
those which have no parents, are characterized by 

marginal (non-conditioned) probability distribu­
tions. Within such a representation, every vari­
able, when conditioned on the value of its parents, 
is independent of every other variable except its 
descendants, a characteristic known as the Markov 
property. A BN thus provides a graphical repre­
sentation of the relationships-dependencies and 
independencies-between variables in a joint prob­
ability distribution. 

In application, some of the variables compris­
ing a Bayesian network are observable, and oth­
ers are not. The analyst's goal is to infer the values 
of the unobservable variables from the observable 
ones. Imagine, for example, that a cognitive engi­
neer wishes to design a decision-aiding system to 
judge whether a military pilot is too fatigued to fly 
a mission (e.g., Rabinowitz, Breitbach, & Warner, 
2009). Because the pilot's level of fatigue cannot be 
observed directly, it must be inferred from observ­
able evidence. Assume that three pieces of evidence 
will be considered in rendering each judgment: the 
cumulative amount of sleep the pilot has had in the 
previous 24 hours, the current time of day (e.g., 
Gunzelmann, Gross, Gluck, & Dinges, 2009), 
and a measure of performance on a short battery 
of psychomotor tests (Dinges & Powell, 1985). 
Figure 31.1 a shows the simplest possible Bayesian 
network that we might construct from these data. 
Here, each piece of observable evidence is treated 
as an independent predictor of the value of the 
unobservable variable. Such a model is known as 
a naive Bayesian network, and rests on the assump­
tion, evident in the figure, that all observable vari­
ables are independent from one another. Despite 
their simplicity, naive Bayesian nets often perform 
well. When the assumption of independent evi­
dence variables is strongly violated, however, perfor­
mance of such models can mislead, overweighting 
the information provided by correlated variables 
(Koller & Friedman, 2009). In the current example, 
for instance, it seems likely that psychomotor per­
formance will be correlated with time of day and 
with the amount of sleep accumulated in the pre­
ceding 24 hours, meaning that a naive Bayes model 
is probably inappropriate. Figure 31.1 b presents an 
alternative model that might better capture the rela­
tionships among the variables under consideration. 
Here, fatigue is assumed to be contingent on the 
sleep levels and time of day, while psychomotor per­
formance is assumed to be contingent on fatigue. 
The structure of a BN will generally be dictated 
by the modeler's theoretical premises, and, in cases 
where the appropriate structure is not obvious, the 
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Figure 31.1 A Bayesian network relating sleep, fatigue, and 

performance. 

modeler can design and test the fit of multiple struc­
tures to determine which performs best. In the event 
that theory does not imply any network structure a 
priori, machine learning algorithms can be used to 

infer structure from data. 
Of course, specifYing the network structure is 

only the first step in building a Bayesian network 
model. Once the structure is in place, it is neces­
sary to attach a probability distribution to each node 
(marginal distributions for the root nodes, condi­
tional distributions for all child nodes). How are 
these determined? In some cases, the analyst may be 
able to solicit estimates from subject matter experts; 
Renooij (2001) reviews methods for doing this. Note 
that the Markov property dramatically simplifies the 
task of establishing conditional probability distribu­
tions for the variables in a BN, since each variable 
need only be conditioned on its parents. Nonetheless, 
probability estimates for components of complex 
systems may be difficult to elicit. In other cases, the 
subject matter experts may not be available. In these 
instances, machine learning algorithms can again 
be used, now to infer the needed probability values 
from pre-existing data or from data collected with the 
specific purpose of training the model. Returning to 

the example above, for instance, we might design an 
experimental study in which pilots come to the lab 
at different times of day and with different amounts 
of sleep, complete the psychomotor test battery, then 
fly a simulated mission. On the basis of his or her 
simulated flight performance, we could retrospec­
tively classifY each pilot as either alert enough or too 
fatigued to fly, and the data acquired could be used 
to train the BNs in Figure 31.1 to classifY pilot levels 
based on time of day, accumulated sleep levels, and 
psychomotor performance. If we were not satisfied 
that either of the network structures we've specified a 
priori is appropriate, we might also infer an alterna­

tive structure from the data. 

Bayesian Reasoning in Humans 
Bayesian network analysis provides a methodol­

ogy for modeling even immensely complex systems 
of variables. In everyday behavior-in the work­
place, the vehicle, and the home-the Bayesian 
reasoning problems that decision makers face may 
be much simpler. Generally, though, they must be 
solved by an unaided human, without the benefit of 
a BN or other formal support system. How closely 
do human decision makers approach the Bayesian 

ideal under such circumstances? 
Since Kahneman and Tversky's (1972, 1973) 

work in the early 1970s on judgment and deci­
sion making, conventional thought in cognitive 
psychology has held that humans are inherently 
poor Bayesian reasoners. Kahneman and Tversky's 
data suggested that human decision makers largely 
ignore event base rates-P(lf) in Bayes' theorem­
when judging the probability of a hypothesis given 
a set of data, and research on decision makers in 
high-consequence domains outside the labora­
tory appeared to corroborate this conclusion. One 
study ( Casscells, Schoenberger, & Graboys, 1978) 
presented physicians, hospital staff, and advanced 

medical students this problem: 
If a test to detect a disease whose prevalence is 

1/1,000 has a false positive rate of 5%, what is the 
chance that a person found to have a positive result 
actually has the disease, assuming that you know 
nothing about the person's symptoms or signs? 

Assuming the best-case scenario that the test in 
question has a true positive rate of 100%, the cor­
rect answer to this question is approximately 2%; 
even though the false positive rate is modest (5%), 
the very low base rate of the disease means that a 
positive result is far more likely to come from a 
patient without the disease than from a patient with 
it. Fewer than 20% of the participants in Casscells 
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et al.'s study answered correctly, and even later work 
carefully clarifYing the terminology and assump­
tions of the problem led to a correct response rate of 
only 36% (Cosmides &Tooby, 1996). Results such 
as these led many to the conclusion that human 
decision making is decidedly non-Bayesian. 

Recent work, though, has rehabilitated the 
human decision maker's reputation as a Bayesian 
reasoner. A variety of behaviors, even if they do not 
require explicit probabilistic judgments, demonstrate 
an implicit sensitivity to Bayesian contingencies. 
Visual attention, for example, appears to prioritize 
stimuli that are likely to have a large influence on 
posterior probabilities (Itti & Baldi, 2009), and a 
Bayesian model of saccade target selection accounts 
well for the distribution of eye movement ampli­
tudes during reading (Engbert & Kriigel, 2010). 
Perhaps more surprisingly, even explicit predictions 
of conditional events show an exquisite sensitivity 
to the form of the prior probability distributions. 
Griffiths and Tenenbaum (2006) asked participants 
to predict a variety of real-world phenomena (e.g., 
the length of a poem, the total grosses of a movie) 
conditioned on a piece of background information. 
One item asked, for example, "If you were calling a 
telephone box office to book tickets and had been 
on hold for 3 minutes, what you would predict for 
the total time you would be on hold?" Phenomena 
about which judgments were made were chosen to 
reflect prior probability distributions of different 
forms (Gaussian, power-law, Erlang). Remarkably, 
participants' judgments implied an awareness of the 
form of the prior distribution for each of the differ­

ent types of phenomena. 
Moreover, even explicit probabilistic judgments 

of the type made in Casscells et al.'s (1978) study, 
described above, can be made to approach the 
Bayesian norm. Gigerenzer and Hoffrage (1995) 
and Cosmides and Tooby (1996) speculated that 
human decision makers' poor performance in 
earlier studies of Bayesian judgments was not the 
consequence of an inherent inability to reason in 
accordance with Bayes' law, but was a side effect of 
the format in which the problems were presented 
to study participants. Studies demonstrating poor 
Bayesian reasoning, these authors noted, gener­
ally presented information to participants as prob­
abilities (e.g., a 5% chance of a false positive result) 
or relative frequencies (e.g., 5% of healthy people 
tested produce a false positive result). People inter­
acting with the natural environment, however, do 
not encounter information in these formats. Rather, 
they experience individual events and accumulate 

information about event frequencies. Gigerenzer 
and Hoffrage (1995) and Cosmides and Tooby 
(1996) thus argued that evolution is more likely 
to have equipped human decision making to rea­
son with natural frequencies than with probabili­
ties or relative frequencies. Gigerenzer and Hoffrage 
noted as well that a representation of probabilistic 
information as natural frequencies dramatically 
simplifies Bayesian reasoning. Imagine that a person 
has encountered some number a of events in which 
evidence E was obtained when hypothesis H was 
true, and some number b of events in which evi­
dence E was obtained when H was false. The proba­
bility P(J-JIE) can then be estimated easily as 

P(HIE) = a!(a +b) 

As predicted by these arguments, experiments 
have revealed that human decision makers indeed 
come closer to the Bayesian ideal when reasoning 
with natural frequencies than when reasoning with 
probabilities or relative frequencies. For example, 
Gigerenzer and Hoffrage (1995) compared responses 
to problems described with probabilities or natural 
frequencies in the following ways. 

PROBABILISTIC DESCRIPTION 

• The probability of breast cancer is 1% for 
women age 40 who participate in routine screening. 

• If a woman has breast cancer, the probability 
is 80% that she will get a positive mammogram. 

• If a woman does not have breast cancer, the 
probability is 9.6% that she will also get a positive 

mammogram. 
• A woman in this age group had a positive 

mammography. What is the probability that she 
actually has breast cancer? __ % 

FREQUENTIST DESCRIPTION 

• Ten out of every 1000 women age forty who 
participate in routine screening have breast cancer. 

• Eight out of every 10 women with breast 
cancer will get a positive mammogram. 

• Ninety-five out of every 990 women without 
breast cancer will also get a positive mammogram. 

• Here is a new representative sample of women at 
age 40 who got a positive mammography in routine 
screening. How many of these women do you expect 
to actually have breast cancer? __ out of __ 

In a sample of university students, only 16% 
responded correctly to the probabilistic descrip­
tion above, while 46% responded correctly to the 
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description of natural frequencies (Gigerenzer & 
Hoffrage, 1995). In a sample of experienced physicians, 
even more remarkably, only 8% responded correctly to 
the probabilistic description, while 46% responded 
correctly to the natural frequency description (Hoffrage 
& Gigerenzer, 1998). Cosmides and Tooby (1996) 
demonstrated a similar advantage for natural frequency 
descriptions using Casscells et al.'s (1978) medical rea­
soning problem, and Hoffrage, Lindsey, Hertwig, and 
Gigerenzer (2000) documented the benefits of natu­
ral frequency representations for professional decision 
makers in AIDS counseling and the law. 

The implications of these findings are clear. To 
encourage Bayesian reasoning, display designers 
should present probabilistic information using nat­
ural frequencies. In fact, not only should displays 
present natural frequencies, but they should omit 
descriptions of probabilities entirely; probabilities 
presented redundantly with natural frequencies not 
only fail to improve reasoning but actually produce 
poorer judgments than natural frequencies pre­
sented alone (Cosmides & Tooby, 1996). 

Of course, even under the best of circumstances 
our probabilistic judgments will (by definition) be 
uncertain. The assistance of a BN or the represen­
tation of data as natural frequencies may improve 
our chances of a correct judgment, but neither can 
guarantee a correct judgment. Having made a series 
of classifications or diagnoses, we can therefore ask 
ourselves how good-how much better than chance, 
how close to optimal-those judgments were. This is 
the purview ofTDS. 

The Theory of Signal Detection 
The Search for Extraterrestrial Intelligence 

(SETI) Institute, based in Mountain View, CA, is 
the premiere research organization devoted to seek­
ing evidence for life outside of this planet. A large 
part of its task is a problem of signal detection­
determining whether a particular pattern of radio 
waves originating from space is an intelligently 
generated message or merely a product of celestial 
noise. This is, of course, a complicated and expensive 
proposition, but is no different fundamentally than 
the problem faced by a radiologist trying to discern 
whether a lung x-ray contains a tumor, a security 
checkpoint screener trying to determine whether a 
bag contains a weapon, or a Bayesian network trying 
to classifY a pilot as fatigued or alert. Any task faced 
by an organic or engineered agent in which evidence 
must be scrutinized in order to determine whether 
it derives from one of two mutually exclusive and 
exhaustive sources is a problem of signal detection, 

and TSD (Green & Swets, 1966) provides a simple 
framework with which to understand performance 
and prescribe optimal behavior in such tasks. 

TSD achieves its simplicity by avoiding a major 
substantive problem in any decision task-namely, 
the problem of how evidence is collected. It is for 
that reason that the theory is flexible enough to 

treat problems in both engineering and psychol­
ogy: It makes no effort at either a theory of micro­
wave antennae or human perception. What it does 
is characterize the statistical problem of rendering 
a decision from imperfect evidence: How likely is 
it that a given evidence sample is consistent with 
the presence of a signal-a message from aliens, a 
cancerous tumor, a camouflaged gun, a fatigued 
pilot-rather than from noise or some other speci­
fied alternative? The general approach of TSD is 
depicted in panel A of Figure 31.2, in which the 
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False aJarm rate = 0.09 
(Correct rejection rate= 0.91) 
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Figure 31.2 Distributions of signal and noise in theory of signal 
detection (TSD). 
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abscissa represents the strength of evidence that an 
evidence sample represents a signal, and the curves 
represent probability density functions describing 
the distribution of evidence assuming either that a 
signal is absent (left curve) or that a signal is pres­
ent (right curve). The standard signal detection 
model assumes that the evidence distributions for 
signal and noise are Gaussian with equal variance. 
In fact, though, neither the assumption of Gaussian 
distributions nor the assumption of equal vari­
ance is crucial to TSD (Pastore, Crawley, Berens, 
& Skelly, 2003), and empirically, the assumption 
of equal variances is often violated (Swets, 1986). 
In Figure 31.2, the signal distribution is arbitrarily 
assumed to be of greater variance than the noise 
distribution. Any experienced level of evidence is 
represented by a single point on the abscissa (for 
example, e

1 
or e

2
), and the corresponding likelihood 

of that level of evidence occurring under conditions 
of noise and signal, respectively, are indicated by the 
height of the probability density functions at those 
points. In this example, e

1 
is more likely to be noise 

than signal, and e
2 

is more likely to be a true sig­
nal than noise. The cumulative likelihood of noise 
and signal sources as a function of the amount of 
evidence is shown in panel B, and the likelihood 
ratio is shown in panel C. These values will become 
important shortly, when we consider how to opti­
mize signal detection performance. 

Decision Making 
That a psychological or physical experience 

can be described as a set of likelihoods, each cor­
responding to a probabilistic hypothesis about the 
nature of evidence under various conditions, is the 
first major theoretical tenet ofTSD. However, since 
a decision must eventually be made on the basis of 
the evidence-to call the president, to order treat­
ment, to detain a traveler, to allow a pilot to fly-a 
procedure is necessary for translating the continu­
ous variables of evidence and likelihoods into a 
binaty decision. In TSD, this is done by applica­
tion of a deterministic decision criterion: Evidence 
greater than a prespecified level is taken to indicate 
a signal, and evidence below that level is rejected as 
a non-signal. This mechanism contrasts with other 
theories of decision making in which evidence is 
probabilistically related to the decision (Parks, 1966; 
Schoeffler, 1965) or the criterion is conceptualized 
to be noisy (Benjamin, Diaz, & Wee, 2009; Mueller 
& Weidemann, 2009; Wickelgren, 1968). 

When an evidence regime is brought together 
with a decision criterion, we can describe all of the 

possible outcomes of a decision event by the heights 
of cumulative density functions, as shown in 
panel B of Figure 31.2. If a signal event is detected, 
it is a hit; if it is not detected, it is a miss. When a 
noise event is mistaken for signal, it is a false alarm; 
when it is correctly classified as noise, it is a cor­
rect rejection. These terms map in a straightforward 
manner onto the areas to the left and right of the 
criterion in the mass functions in panel A, and onto 
the nomenclature used to describe the precision of 
medical tests: Test sensitivity is hits I (hits + misses), 
and test specificity is correct rejections I (correct 
rejections +false alarms). 

Clearly, the goal of any decision maker in a sig­
nal detection task is to have a high hit rate coupled 
with a low false-alarm rate. But Figure 31.2 reveals 
perfect performance to be generally unattainable: 
When the signal and noise distributions overlap, 
it is impossible to set a decision criterion that will 
correctly classifY every event. As the distributions 
overlap less, obviously, then the ability to correctly 
classifY events improves. The separation between 
distributions is thus described as the decision mak­
er's sensitivity. Unless sensitivity is large enough 
to ensure negligible overlap of the distributions, 
though, no criterion can guarantee perfect perfor­
mance. How, then, should a criterion be chosen? A 
good starting point is to consider the log likelihood 
ratio at the experienced amount of evidence. The 
log likelihood ratio is shown as a function of evi­
dence in panel C, and provides a rough-and-ready 
means by which to make a decision. If the log like­
lihood ratio is greater than 0, then the evidence 
favors a signal, all other factors being equal. If the 
log likelihood is less than 0, the evidence suggests 
the event is more likely to be noise than signal. In 
the example, e

1 
falls below 0 and thus is more likely 

to be noise, whereas the example event e
2 

yields 
a log likelihood ratio greater than 0 and is more 
likely to be a signal. 

A prudent decision is, however, only partly a 
function of the evidence sample at hand. Bayes' 
theorem tells us that the base rates of the underlying 
conditions should be taken into account when con­
sidering what to infer; a wise decision maker will be 
more reluctant to infer a rare event than a common 
one. Intelligent extraterrestrial life is pretty hard to 
come by, cancerous tumors are not, and we should 
therefore be more inclined to believe evidence of a 
tumor than evidence of an intelligent extraterres­
trial message. In the detection framework, event 
base rates influence the conservativeness with which 
the decision maker sets the response criterion. 
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To be more specific, Bayesian analysis tells us that 
to decide whether an event is signal or noise, we 
should scale the likelihood ratio based on the evi­
dence by the ratio of the signal and noise event base 
rates, yielding a quantity known as the Bayes' foe­
tor. A criterion at the location on the evidence axis 
where the Bayes' factor equals 1 maximizes response 
accuracy. 

In many contexts, though, the decision maker's 
goal is not to maximize response accuracy but to 
maximize the expected value of his or her judgments. 
Failing to prevent the outbreak of a virulent disease 
has serious public health consequences, for example, 
whereas a mistaken positive diagnosis of the disease 
may lead to containment efforts that are, by com­
parison, inexpensive. A public health official may 
therefore wish to err on the side of over-diagnosing 
the disease rather than risk even a moderate number 
of failed diagnoses. More generally, the costs and 
benefits of the various decision outcomes need to 
be considered when setting a judicious criterion in 
any signal detection task. If the cost of a miss is less 
than the cost of a false alarm, it is wise to adopt a 
liberal decision criterion. If the cost of a false alarm 
is greater than the cost of a miss, conversely, a more 
conservative criterion is optimal. 

In practice, other factors influence the place­
ment of a decision criterion, such as the experienced 
variability of evidence across a range of decisions 
(Benjamin & Bawa, 2004; Hirshman, 1995). 
Reviews of how criteria are adjusted are provided 
by Rotello and MacMillan (2007), and a theoreti­
cal proposal for the placement and adjustment of 
criteria is provided by Treisman (1987). For present 
purposes, it is enough to see that TSD provides a 
means by which to disentangle aspects of perfor­
mance related to decision making (the criterion) 
and aspects related to discrimination (the ability to 
accurately discern signal from noise). The following 
section discusses this further. 

Separating Bias from Sensitivity: lhe 
Receiver Operating Characteristic 

A useful conceptual and analytic tool in TSD 
analysis is the receiver operating characteristic (ROC). 
The ROC is a plot of the hit rate against the false 
alarm rate across all possible criteria, and is an exam­
ple of a larger class of functions known as state-trace 
plots (Bamber, 1979). Because criteria serve only 
to partition the evidence space into binary deci­
sions and do not influence the location and shape 
of the evidence distributions, the ROC provides a 
bias-free measure of performance. An ROC for the 

distributions displayed in Figure 31.2 is shown in 
Figure 31.3. Several aspects of the plot are reveal­
ing. First, performance is related to how far the 
curve is from the major diagonal, which represents 
chance levels of discrimination. The most com­
mon measures of sensitivity are estimated by the 
distance from that curve from the major diagonal 
and the area under that curve. Distances from the 
diagonal are measured in standard deviation units 
of the noise distribution (panel A, Figure 31.1) and 
include d; d, and d. These differ from one another 
only in ho: they a~count for differential variance 
of the two distributions. Whether the distributions 
differ in variance is also evident from the ROC; in 
this case, the greater mass under the (not shown) 
minor diagonal indicates that the signal distribution 
is of greater variance. Measures for area under the 
curve include A and A,' which differ in how the 

z 

area is estimated. 
Any point on the ROC function reflects a pos­

sible criterion. The ROC makes it easy to see why it 
is absolutely necessary to account for differences in 
response policy in order to understand discrimina­
tion: A conservative decision maker can maintain a 
very low hit rate and be equivalent in sensitivity to a 
liberal decision maker with a high hit rate. TSD can 
be thus be considered a tool used to re-parameterize 
experimental statistics-hit and false-alarm rates­
into the theoretically meaningful variables of sensi­
tivity and response bias. 

In the example here, the ROC can be directly 
inferred from the distributions shown in Figure 31.2. 
In application, those distributions can be estimated 
only from empirical performance data in a detec­
tion task. Because a single hit rate/false-alarm rate 
pair is only a single point in ROC space, an ROC 
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Figure 31.3 Receiver Operating Characteristic (ROC) describ­
ing signal detection performance. 

472 BAYESIAN AND SIGNAL DETECTION MODELS 

cannot be estimated in an 
one such pair is contribu 
pairs are usually estimate( 
bias across within-subjec 
or a base rate variable, : 
by soliciting confidence 
decision maker to maim: 
ria simultaneously. 

Multiple Decision .M. 
Heretofore we have 

a single decision make1 
many contexts, though 
not performed by a sin1 
tive teams of human ar 
mon example is an aler; 
an automated agent ~ 
human decision maker 
tus of a monitored sub 
bounds (Sorkin & WQ( 
traffic monitor, for inst 
pilots to potential confl 
cases, performance of 
system will be a funct 
sitivity and bias of the 
sensitivity and bias of 
Ideally, performance o 
that of either of the i1 
If judgments made by 
independent and are 1 

a final decision, more 
the joint system, as me 

be d:a = ...J(d:2 + d:2
) 

of the human-autom: 
tivity of the automate 
is the sensitivity of t 
(Pollack & Madans, 
2001). Unfortunate!: 
automation-aided hu 
(Parasuraman & Rile~ 
match the performan 
(see Wickens & Dix' 
happens even when 
and human are base< 
sources, it indicates 1 

to optimally combi 
automated aid's. 

Chaining automa 
ers also complicates 1 

automated agent's c 
above, sensitivity is 
rion for a single dec 
monitor system, hov 



cannot be estimated in an experiment in which only 
one such pair is contributed by a subject. Multiple 
pairs are usually estimated by manipulating response 
bias across within-subject conditions with a payoff 
or a base rate variable, as described previously, or 
by soliciting confidence ratings, which require the 
decision maker to maintain multiple response crite­
ria simultaneously. 

Multiple Decision Makers 
Heretofore we have considered the behavior of 

a single decision maker, working in isolation. In 
many contexts, though, signal detection tasks are 
not performed by a single agent, but by collabora­
tive teams of human and machine agents. A com­
mon example is an alerted-monitor system, in which 
an automated agent issues an alarm to notifY a 
human decision maker when it detects that the sta­
tus of a monitored subsystem has gone out of safe 
bounds (Sorkin & Woods, 1985). An electronic air 
traffic monitor, for instance, might detect and alert 
pilots to potential conflicts between aircraft. In such 
cases, performance of the joint human-machine 
system will be a function of four factors: the sen­
sitivity and bias of the automated monitor, and the 
sensitivity and bias of the human decision maker. 
Ideally, performance of the joint system will exceed 
that of either of the individual component agents. 
If judgments made by the two agents are statistically 
independent and are weighted optimally to render 
a final decision, more specifically, the sensitivity of 
the joint system, as measured by the statistic d: will 
be d:a = -J(d:2 + d:2

), where d:a is the sensitivity 
of the human-automation system, d: is the sensi­
tivity of the automated monitor by itself, and d' h 

is the sensitivity of the unaided human operator 
(Pollack & Madans, 1964; Sorkin, Hays, & West, 
2001). Unfortunately, empirical performance of 
automation-aided humans is rarely if ever optimal 
(Parasuraman & Riley, 1997) and often fails to even 
match the performance of the automation by itself 
(see Wickens & Dixon, 2007, for review). As this 
happens even when judgments of the automation 
and human are based on independent information 
sources, it indicates that human users typically fail 
to optimally combine their judgments with the 
automated aid's. 

Chaining automated and human decision mak­
ers also complicates the problem of determining the 
automated agent's optimal criterion. As discussed 
above, sensitivity is independent of response crite­
rion for a single decision maker. Within an alerted- , 
monitor system, however, a change in the automated 

monitor's bias may not simply change the balance of 
the automation's hit and false-alarm rates, but may 
also change the human agent's willingness to trust 
the automation. Trust is a psychological process 
influenced by multiple factors (See & Lee, 2004), 
and the response criterion that optimizes an auto­
mated monitor's performance may not be the cri­
terion that optimizes the human operator's trust 
or the behavior of the human-automation system 
as a whole (Sorkin & Woods, 1985). A variety of 
data show, for example, that holding all other fac­
tors equal, human operators tend to trust an aid 
that is biased toward misses more than they trust an 
aid biased toward false alarms (Dixon, Wickens, & 
McCarley, 2007). Thus, even if a bias toward false 
alarms is normative for the automated monitor con­
sidered by itself, it may not optimize sensitivity of 
the joint human-automation system. Such effects 
imply that until the behavior of the human opera­
tor can be predicted accurately from theoretical first 
principles, the process of determining the optimal 
criterion for the automated agent in a human-au­
tomation system will not be strictly analytical, but 
largely empirical. 

Extensions ofTSD 
The mathematics ofTSD are sufficiently straight­

forward that the theory has been generalized in 
ways that have offered greater explanatory power in 
understanding human behavior. The most promi­
nent of these has been the development of multivari­
ate TSD, which allows stimuli and responses to vary 
along multiple independent dimensions and thus 
brings a greater diversity of tasks into the domain of 
detection theoretic analysis. Multivariate TSD has 
been applied to prominent problems in perception 
(Ashby & Townsend, 1986) and memory (Banks, 
2001); good overviews are provided by MacMillan 
and Creelman (2005) and Wickens (2002). More 
recent work in TSD has developed methods to iso­
late the effects of encoding noise from decision noise 
in detection performance (Benjamin et al., 2009), 
and has begun to formulate and apply a model of 
fuzzy signal detection (Masalonis & Parasuraman, 
2003; Parasuraman, Masalonis, & Hancock, 2000) 
in which events and responses no longer fall into 
discrete categories, but can vary along a continuum 
from signal to noise. 

Conclusion 
Bayesian and signal detection models offer meth­

ods of making, modeling, and assessing judgment 
and decision making under uncertainty. While the 
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latter has a long history in disciplines related to cog­
nitive engineering and the former has only recently 
come to fruition in these fields, both are under 
continued theoretic development. As noted above, 
ongoing work in TSD seeks to apply detection the­
oretic analysis to a broader range of problems than 
has been possible in the past, including problems 
for which the distinction between signal and noise 
is not clearly dichotomous, but fuzzy (Lu, Hinze, 
& Li, 2011; Parasuraman et al., 2003). Research 
using Bayesian network analysis, meanwhile, has 
begun to produce methods for real-time classifica­
tion of human operator traits Qipp et al., 2008) and 
states (Liang et al., 2007). Such methods stand to 
improve human safety and productivity in multiple 
ways, for example, by allowing an automated sys­
tem to tailor its own behavior to the abilities and 
conditions of an operator (Byrne & Parasuraman, 
1996) or by enabling an automated system to detect 
and alert- an operator in a dangerous state of dis­
traction (Lee, 2009). Developments like these will 
expand the scope and power of cognitive engineer­
ing, making Bayesian and signal detection models 
ever more valuable to the theory and practice of the 
discipline. 
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