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Similar to many scientific pursuits within psychol- 
ogy, the study of human cognition is an exercise 
that is equal parts imagination, deduction, and 
salesmanship. Theoretical claims are bootstrapped 
onto the elaborate but typically freewheeling arti- 
fices constructed by fellow psychologists who main- 
tain equally fragile footing. Despite the blustery 
nature of cognitive theorizing, a central question 
remains unresolved: What constitutes necessary and 
sufficient evidence for the existence of a psycholog- 
ical mechanism? 

Even the earliest theorists encountered situations 
in which multiple measures of nominally equivalent 
cognitive processes had ddferent psychomemc prop- 
erties and showed differential effects of a common 
manipulation. Ebbinghaus (1885) noted, for exam- 
ple, that measures of relearriing were much more 
sensitive to distant prior experience than measures of 
recall. Much of the history of cognitive psychology 
can be interpreted in the context of debates about 

I how to reconcile such differences. The purpose of 
this chapter is to provide an illustration of how mod- 

--- - - -- - 
em cognitive psychology deals with the divergences 
and convergences made apparent by the use of multi- 
ple m a s u e s  ad,xdoing-so&ow.those effects can-- 
be used profitably in the clevelopment of theory and 
the postulation of mental systems. 

I will not attempt to address well-developed sta- 
tistical tools that are the focus of chapters 18 to 21 
and others in [his volume. Rather, 1 will concentrate 
on model-based interpretations of multiple meas- 
ures and how the application of such techniques 

has advanced theoretical development in cognitive 
psychology. In doing so, I will review four topics 
related to the specific problems addressed by and 
applications of multimethod approaches to under- 
standing cognition. In the first and largest section, I 
will examine several modem examples of how 
measurements that combine systematically related 
dependent variables can yield functions that are 
more reliable and more informative than ones that 
can be derived from single measures. The second 
section will focus on the evaluation of the theories 
of cognition, most specifically on the question of 
how formal models can be tested in such a way that 
emphasizes their ability to account for extant data 
patterns without being so powerful that they pre- 
dict other invalid data sets. Third, we will address 
the question of how traditional behavioral measure- 
ments in cognitive psychology can be meaningfully 
integrated with brain-based measures assessing 
electromagnetic properties of cellular material in 
the brain or llemodynamic properties of blood flow 
to the brain. Finally, we will examine one domain 
in which prominent theorists-have-tried to establish- 
guidelines for what kind of and how much evidence 

- is necessary -for- the--postulation-ofa-i~iei~tal system. 
To tie these sections together, the accompanying 

examples in each section will draw on current and 
historical developments in research on memory, 
with the objective of illustrating to the reader how 
the judicious combination of different measures has 
motivated important theoretical developments in 
that lield. 
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COMBINING MEASUREMENTS TO YIELD 
GENERALIZABLE PSYCHOLOGICAL 
FUNCTIONS 

Often we wish to measure cognitive performance in 
a domain in which behavior is strongly and system- 
atically related to some individual difference vari- 
able that we are not concerned with. This fact 
poses two problems from a measurement perspec- 
tive. First, it adds a source of variability to our sam- 

~ - 
pling distributions. This problem can be annoying 

~ - 

and may force us into increasing the sample size of 
our experiment, but it is hardly fatal. A second, 
more dangerous, effect is that individual differences 
may relegate our measurements to a region of 
parameter space that does not reflect a meaningful 
or complete range of the behavior in question. 

Three general strategies exist to counter the neg- 
ative effects of individual differences limiting the 
range of our measurements. First, the researcher 
can use established theoretical principles in a 
domain to interpolate or extrapolate to portions of 
the function that are sparsely occupied by data. Sec- 
ond, the missing data can be inferred statistically by 
fitting a parsimonious function to the data, such as 
the lowest order polynomial that accounts for some 
predetermined proportion of the data. Third, 
researchers can use a data-collection strategy that 
ensures sampling across the range of the measure- 
ment in question. This can be done by strategically 
varying the conditions or instructions of an experi- 
ment in such a way so as to induce variability along 
the individual-difference dimension. By doing so, 
the function relating that dimension to the perform- 
ance measure can be estimated for each subject. 
Here I lay out two examples of how this technique 

- .. - is commonly used in memory research. In both of 
- - -  

these cases, the solution to the problem of con- 
founding individual differences lies in the elicita- 
tion of measures across multiple strategically varied 
conditions. 

have seen that item in a particular earlier study 
episode. One subject might not care much about the 
advancement of science, want to get out and get to 
lunch, and thus zip his way through our task as 
quickly as humanly possible, making each decision 
after only the least amount of deliberation. Another 
subject might feel as though the experimenter will 
treat her score as a measure of intelligence, charac- 
ter, or trustworthiness and thus pore over each test 

-stimulus-to - c x t r a c t - e v u y m ~ h b ~  
tion from memory before making a recognition deci- 
sion. Such individual differences are commonplace 
in decision tasks like this one. Even if we use some 
between-subject manipulation of learning, for exam- 
ple, we have faith that random assignment will wash 
away such strategic differences over our sample. 

But what if our entire sample was like the first 
hypothetical subject described earlier? This sce- 
nario is not entirely unlikely at many major Ameri- 
can universities. Our laboratory might be 
aesthetically unappealing, or our experimenters 
might have bad breath; such factors can also influ- 
ence strategy selection in our subjects. 

Hypothetical group means are shown in the top 
panel of Figure 24.1 and indicate no effect of our 
learning manipulation. It would be useful to know 
if there is a restriction placed on our data by an 
inadequate r-nge of decision speeds. In this case, all 
subjects performed the task quickly, but we have no 
way of assessing that fact. Even if we measured 
decision response time (RT), we would be ill 
equipped to make any such judgments without a 
sense of what the "full" parameter range of 
response speeds should be. The solution to this 
problem is to create a within-subjects variable along 
which we manipulate the decision placement along 
the speed-accuracy trade-off spectrum. We might,.- 
for example, use payoffs for different combinations 
of correct or speedy decisions. We might simply 
instruct the subjects to make decisions quickly or 
to take their time. Perhaps most effectively, we can 
force subjects to withhold their response until a 

Speed-Accuracy Trade-offs in Recognition delimited amount of time has elapsed and then 
Memory force them to make their response within a given 
Consider an experiment in which subjects are asked time window (Reed, 1973). If we use such a strat- 
to make a recognition judgment-that is, to decide egy, we ensure the collection of performance data 
for each in a list of stimuli whether they believe to across a reasonable range of decision speeds. We 



Multimethod Approaches to the Study oJ Cognition 

Condition 

Manipulated Lag + Mean Response Time 

. . ~- . ~ - ~ ~~~~ ~ . . flGURE_24.12_Group_means (top  ane el) and speed-accuracy trade-off functions 
p~ . . - ~ - -  ~- . . - 

(bottom panel) for two hypo<hetical conditions. 

I . -- 

can also clearly detect those subjects that ignore in which A represents asymptotic accuracy, R the 
our manipulation and treat them and their data rate of approach to the asyrnplote, I the point at 
appropriately which performance first rises above the floor of 

I The data in the bottom half of Figure 24.1 show chance performance on the task, and t the time 
what such figures look lilte. The data here have point after the onset of the stimulus. One impo'rtant 
been fit with a shifted exponential function, aspect of such a function is that is can be used to 

describe behavior for each subject. Whereas an 
P = A ( I  -  for r 2 I (1) individual mean provides only a scalar value that is 

some unlcnown cnnlbination of performance and 
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individual-difference characteristics, this function 
provides estimates of performance across the entire 
meaningful range of the confounding individual- 
difference variable. And, by doing so, we can now 
see that our failure to detect group differences in 
the top part of the Figure 24.1 owed in large part to 
the fact that our subjects, by virtue of their inherent 
laziness and consequent choice of a particularly 
speedy decision strategy, placed themselves in a 
r a ~ ~ ~ w h i c h  irwould have be-en-quite diffrculrto- 
detect an effect of our learning manipulation. 

Figure 24.2 displays some actual results that 
demonstrate how this technique has proven useful 
in evaluating important theoretical questions in 
human cognition. In the top half of Figure 24.2 are 
empirical speed-accuracy functions for the endorse- 
ment of studied and unstudied high- and low-fre- 
quency words (Hintzman, Caulton, & Curran, 
1994). As is commonly found, recognition is supe- 
rior for low-frequency words in two ways: the rate 
of correct endorsement for studied items, or hit 
rate, is higher, and the rate of incorrect endorse- 
ment of unstudied items, or false-alarm rate, is 
lower, thus yielding a mirror effect (Glanzer & 
Adams, 1990). Most theoretical stances are in agree- 
ment about the nature of the difference in h t  rate: 
The presentation of an uncommon word constitutes 
a distinctive event, and distinctive events are more 
memorable. However, there are several different 
extant proposals as to the nature of the difference in 
false-alarm rate. One suggestion is that the higher 
false-alarm rate to common words reflects the fact 
such words enjoy higher baseline levels of familiar- 
ity because of the greater number and frequency of 
exposures to such words, by definition (e.g.; 
Glanzer & Adams, 1985; Hintzman, 1988). 

Another suggestion is that recognition decisions-- 
are made after two sources of evidence are assessed. 
First, the word is matched against memory, yielding 
an overall assessment of mnemonic familiarity. Sec- 
ond, the word is evaluated as to its likely memora- 
bility, and recognition standards are set that are 
commensurate with that assessment (e.g., Ben- 
jamin, Bjork, & Hirshman, 1998; Brown, Lewis, & 
Monk, 1977). That is, after determining how famil- 
lar a word is, the subject makes a metamnemonic 

assessment of how familiar i t  would be, if the word 
had been studied. Because subjects know high-fre- 
quency words to be less memorable, they set lower 
standards for such words and therefore endorse 
unstudied high-frequency words at a higher rate 
(Benjamin, 2003; cf. Wixted, 1992). Central to this 
suggestion is the idea that this postretrieval assess- 
ment is deliberate and should only be evident if 
enough decision time has elapsed for the subject to 

-.incorporate-suckbl-ecige. 
As can be seen in Figure 24.2, the difference in 

false-alarm rate appears in each response period, 
including the very short ones. This result is incon- 
sistent with the concept of a postretrieval assess- 
ment. However, if these data had not been collected 
across a spectrum of decision times, this conclusion 
would have been impossible to reach. 

Now consider the display in the bottom half of 
Figure 24.2, which depicts results from a different 
recognition experiment. In that experiment, sub- 
jects studied multiple lists, each of which consisted 
of words that were semantically associated to a sin- 
gle, unstudied "critical" word (cf. Roediger & 
McDermott, 1995). At test, the distractor set 
included words that were unrelated to the themes of 
the study lists and also the critical unstudied high 
associate mentioned before. An interesting pattern 
of false endorsement of the critical foils is evident: 
The rate first rises and then falls with decision time 
(Heit, Brockdorff, & Lamberts, 2004). Notably, if 
one assessed only a limited range of the speed- 
accuracy function here, one could conclude that 
false-alarm rate to "critical" items either increases or 
decreases along that range, depending on where one 
found oneself on that function (Benjamin, 2001). 

This method thus has three major advantages. 
First, we minimize the risk of individual difference ..~. 

variables colluding in such a way so as to restrict 
our measurements to a range in which effects are 
not easily detected. Second, when we reparameter- 
ize our accuracy data as the terms of the function 
that we fit them to, we hopefully increase the relia- 
bility and validity of our data. I say "hopefully" 
because such an outcome depends critically on the 
correctness of the function that we choose to sum- 
marize ou; data. The question of how to evaluate 
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FIGURE 24.2. Top panel: Proportion of endorsements to old and new 
- - - -  - -. - --high- andlo~~frequency-words across a-range~of decision times. Bot- 

. .- - . . . . - .~ . . 
tom panel: Proportion of endorsements to old, ne?v,and new "criti'&l"---- -~ - - - - - -  

words across a range of decision times. 

the correctness of a model is addressed in the next Response Bias in Recognition Memory 

I major section of this chapter. A final advantage is In the previous example, I portrayed decision time 

I that the derived functions allow us to evaluate as a potential individual-difference variable influ- 
llypotheses that would be unaddressable were we to encing recognition perfo~mance. Similarly, individu- 

! 
deal with single data points, for example, questions als can difler in the amount of evidence they 
about the rate of information accrual. demand before malting a positive recognition 

I 



Aaroii S. Benjamin 

response. If a test word is only somewhat familiar, 
how is that uncertainty translated into a response? 
Clearly, different people bring different evidential 
standards to the table, and aspects of our experi- 
mental situation also influence how subjects make 
their decisions. Subjects might want, for example, 
to maximize the proportion of correct responses to 
old items-thinking that such a measure more 
validly reflects memory ability-and thus set a low 

- - ?mrgnition criccri-om If a test item-looks even- 

vaguely familiar, they choose to endorse it. This 
somewhat arbitrary choice can influence our 
results: In the top part of Figure 24.3 are hypotheti- 
cal group means, again corresponding to perform- 
ance as a function of some manipulation of 
learning. Here the comparison of conditions is com- 
plicated by large differences in the overall "agree- 
ability" of our subjects: Subjects in the left 
condition say "yes" more often than does the other 
group-to both old and new items. This fact reveals 
that our manipulation affected the decision strate- 
gies associated with recognition, but it is unclear 
whether it also influences memorability To answer 
this question, we need to implement an experimen- 
tal strategy similar to the one discussed earlier and 
gain experimental control over response criterion 
placement. 

The lower part of Figure 24.3 shows perform- 
ance across a wide range of response biases, plot- 
ted on axes corresponding to hit rate and 
false-alarm rate, yielding a receiver-operating char- 
acteristic (ROC). Such data can be elicited by, for 
example, having subjects complete multiple recog- 
nition tests under different payoff conditions. 
More commonly, subjects are asked to indicate a 
degree of subjective confidence along with the 
recognition decision; performance is then plotted-- 
as a cumulative function of the hit rate and false- 
alarm rate at a given confidence level and below. 
This technique allows for the construction of a 
ROC from two related but fundamentally different 
measures: the yeslno recognition response and 
subjective confidence. 

In such a display, differences between subjects or 
between conditions that reflect differences in crite- 
rion setting for the decision component of the 
recognition judgment are virtually eliminated, and 

regularities in the form of the ROC are evident. In 
our example, we can see that the dots, correspon- 
ding to the data in the top half of the figure, lie on 
an isodiscriminability curve. In other words, no dif- 
ferences in memorability are apparent. Yet we could 
only reach this conclusion by uniting multiple 
measures and constructing an ROC that fits the 
data points. Different tasks yield different functional 
forms, and qualities of the ROC can be directly tied 
tc~psycho1ugica~~-f1-spcciGed 
theory of the recognition decision. 

For example, the Theory of Signal Detection 
(TSD), which has evolved into a theory of recogni- 
tion (Banks, 1970; Egan, 1975; Lockhart & Mur- 
dock, 1970) by virtue of analogy with problems of 
discrimination in psychophysics (Green & Swets, 
1966) and engineering (Peterson, Birdsall, & Fox, 
1954) suggests that all stimuli-studied and 
unstudied-elicit some degree of mnemonic evi- 
dence, and the task for the subject is to set a deci- 
sion criterion at some point on the spectrum of 
potential evidence values. 

Certain versions of this theory posit that the prob- 
ability distributions for evidence are Gaussian in 
form. T h  theory has implications for the form of the 
ROC. Specifically, underlying Gaussian probability 
dismbutions imply that a plot of the ROC on binor- 
mal axes should yield a straight line. More formally, 

in which 6s represents the variability of the evidence 
distribution for studied items, and yS represents its 
mean. This function is superimposed on the two 
conditions in Figure 24.3 (on probability axes). 
- Distributions of-equal variance thus imply that - - -  

that line should have unit slope. Figure 24.4 shows 
actual ROC and zROC functions from a representa- 
tive experiment on recognition memory. The simi- 
larities among the 2-transformed functions are 
striking: they do indeed appear to be linear and 
have a slope of -0.8 (Ratcliff, Sheu, & Gronlund, 
1992). These functions thus reveal that the under- 
lying probability distributions may well be normal, 
but they are apparently not of equal variance. This 
particular result suggests that the variance of the 
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FIGURE 24.3. Hit rates and falsc alarm rates from two hypothetical 
conditions (toy panel); hit rates and false alarm rates coplotted across a 
range-of. rcsponse criteria, as a receiver-operating-cllara~rislic- (ROC; -- 

bottom panel). d' indicates the discriminability of studied and unstudied 
stimuli. 

distribution of evidence for studied items is approx- recognition? Consider the relationship between 
irnately 1.25 times larger than for the distribution word frequency and recognition, as discussed in the 
for unstudied items. previous section. The evidence from speed-accuracy 

The form of ROC curves has also been brought trade-off functions was equivocal as to the question 
to bear on the question that we introduced earlier, of whether a slow-acting deliberative process com- 
namely, what processes underlie the mirror effect in bines with general memory familiarity to produce 
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0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1 

False Alarm Rate (FAR) 

-1.5-1.3-1.1 -9 -.7 -.5 -.3 -.1 -1 .3 .5 
.. .- -- - -- - -.  . . . ... .- Z-Transformed-False Alarm Rate~(zFAR) . . ~_ ~~ - 

FIGURE 24.4. ROC and normalized ROC (zROC) functions 
from an experiment on recognition memory. The slope of the 
line is indicated by m. 

the empirical dissociation seen between hit rate and deriving a value against which to compare the 
false-alarm rate as a function of word frequency In actual experienced familiarity of the word. 
the preceding case, the argument concerned Another argument is that two different processes 
whether subjects made a postmnemonic assessment can contribute to the endorsement of an item on a 
of the normative familiarity of the stimulus, thereby recognition test. The first is the same as that por- 
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trayed in the earlier argument: Stimuli enjoy some 
temporary boost in familiarity as a function of 
exposure, and this familiarity value provides some 
evidence of the recency or probability of past 
encounters with this word. Notably, however, the 
familiarity itself conveys nothing about the specific 
nature of the previous experience, so it can lead to 
spurious false alarms to other recently exposed but 
contraindicated stimuli Uacoby, 1999) or even to 
unstudied stimuli that are systematically related to 
studied materials (Roediger & McDermott, 1995). 

Familiarity is hypothesized to be augmented by 
an additional process, often called recollection, that 
serves to retrieve specific aspects of the prior 
encounter with the stimulus. One might recollect 
that a word was presented in italic typeface, or that 
a recommendation regarding life insurance came 
from a particularly disreputable agent, or that an 
author's name is familiar only because of a well- 
publicized tawdry scandal. Obviously, the details of 
a recollective experience can alter the way in which 
we engage a stimulus: We might choose to interact 
differently with a well-respected member of our 
field than with a convicted felon. With respect to 
word frequency, it has been suggested that the 
advantage that studied low-frequency words enjoy 
owes to a greater rate of recollection for such 
words, and that the lower false-alarm rate for 
unstudied low-frequency items reflects lower base- 
line familiarity (Reder et al., 2000). 

Whereas familiarity is presumed to reflect a con- 
tinuum of mnemonic evidence, recollection is typi- 
cally thought to be a finite-state process. That is, 
recollected evidence directly implicates a specific 
prior experience as the locus of familiarity for an 
item, and that evidence specifies conclusively the- - 

status of the stimulus in question: It was experi- 
enced in the appropriate, sought-after context, - or it 
was not. This process is finite-state in the sense that 
the evidence either promotes or discourages a 
response, with no degrees in intervening uncer- 
tainty. Finite-state models imply psychological 
thresholds: There is a point (or multiple points) at 
whic1-1 there is an abrupt transition from "no evi- 
dence" to *"evidence." This stands in contrast to the 
evidence continuum that familiarity provides, in 
which no amount of familiarity perfectly implicates 

prior study; similarly, a complete absence of famil- 
iarity does not unequivocally imply the lack of 
prior exposure. 

Unlike the ROC functions described for Gaussian- 
based evidence distributions, thresholds do not imply 
ROCs that intersect the origin and the point (1, 1) in 
probability space, nor are they necessarily linear in 
binormal space throughout the function. Thus, 
departures from linearity in the form of the zROC 
can be taken as evidence for the contribution of 
threshold-based evidence to the recognition decision. 

To use this logic to address the question of how 
familiarity and recollection contribute to recogni- 
tion, and how they can be related to the word-fre- 
quency mirror effect, Arndt and Reder (2002) 
estimated ROCs for the recognition of low- and 
high-frequency words under special conditions 
designed to promote the use of recollection-based 
recognition. Under these conditions, subjects were 
asked to discriminate between studied items and 
the plurality-reversed complements of previously 
studied items. Researchers have presumed that a 
plurality-reversed distractor should elicit approxi- 
mately equal familiarity to that of the original stud- 
ied item, thus leaving recollection as the only basis 
for correct discrimination (Hintzman Q Curran, 
1994; Hintzman, Curran, & Oppy, 1992). In con- 
trast to the standard ROCs elicited by recognition, 
as described earlier, ROCs elicited from this task are 
nonlinear in Gaussian coordinates (Rotello, 
Macmillan, & Van Tassel, 2000) as are ROCs from 
other tasks thought to emphasize the contribution 
of recollection (Yonelinas, 1997, 1999). 

In comparing these functions for high- and low- 
frequency words, Arndt and Reder (2002) reported 
nonlinear zROCs for plurality-reversed recognition 
and linear zROCs for standard recognition, thus 
replicating prior findings, Moreimp-ojtantly,  he - .  

low-frequency zROC was more convex than the 
high-frequency zROC, a result that suggested that a 
threshold recollection process played a larger role 
in low-frequency item recognition then in high-fre- 
quency item recognition, consisten1 with the inter- 
pretation of Reder el al. (2000). 

More generally, it is importanl to note that ROC 
functions can be derived from theories that cannot 
predict raw hi1 rates or false-alarm rates. Thus, 



'T 

Aaron 5. Benjam~n 

only by combining the two and generalizing across matched the prior study item could reflect either 
different levels of decision bias can such functions form of memory and assumed that their contribu- 
be derived. I hope to have shown here that the tions were independent of one another: I 
evaluation and comparison of such functions is i I 

central to progress in understanding recognition p(targetlinc1usion) = R + A - RA. ( 3 )  
memory. 

Here R indicates the probability of correct recollec- 
i 
I 
I 

Memory Inclusion and Exclusion tion of the study episode, and A indicates the proba- 
bility of automatic nonrecollective influences leading . For purfinaLex~le_of-how-the combination of - .- 

'-1 to aTorreTiresponse. In the condiuon m whlch sub- multiple measures can inspire theoretical advances 
jects are told not to produce the previously studied 

that would otherwise be purely speculative, con- 
I 

pair word, the sources combine differently: sider the general problem of how to purify a meas- 
ure of memory so that our assessment is minimally 
confounded-by factors that look like remembering, 
but are in fact simply nondeliberative influences of 
memory. For example, consider a memory experi- 
ment in which subjects learn semantically or asso- 
ciatively related pairs of words such as bread-butter 
or wishing-well. If we test later memory by present- 
ing the first term of each pair and attempting to 
elicit the second (bread-?), it is an impossible task 
to discern whether a response of butter reveals 
mnemonic retrieval of the previous study episode or 
simply temporary enhanced access to that word by 
virtue of automatic effects and influences of mem- 
ory. Even more dastardly, the response might indi- 
cate nothing more than the prelearned nature of the 
association-through a lapse in attention or per- 
haps strategic yawning, the subject may have never 
even seen the study pair. How can we tease out the 
deliberative recollective aspect of memory in such a 
data set? 

Jacoby (1991) provided a clever solution to this 
problem that involves the use of multiple measures. 
In his experiments, subjects provided their 
responses under two different conditions. The  first..^^ .. 

replicated the typical memory experiment, in which 
they were told simply to remember the target word 
if possible and report it. In the other condition, sub- 
jects were told explicitly to produce any word except 
the target word. The combination of these condi- 
tions allowed Jacoby (1991) to specify a theory of 
how deliberate and automatic influences of memory 
interact to produce responses in this type of cued 
recall paradigm. He claimed that, in the standard 
(henceforth, inclusion) condition, a response that 

That is, if the target word were to be recollected, 
it would not be produced. Thus, a target response 
in this condition indicates a lack of such recollec- 
tion. Under such conditions, the target might 
nonetheless be produced if automatic influences of 
memory lead that word to be particularly accessible. 
The difference between performance in these two 
conditions is thus equal to R and provides a model- 
based estimate of the recollective memory contribu- 
tion to performance in the task. Given this estimate, 
it is easy to derive the estimate for the parameter A, 
which reflects the automatic nonrecollective mem- 
ory influence on the task. 

In one striking example of how the combination 
of inclusion and exclusion memory tasks yields 
results that would otherwise be unobtainable, con- 
sider an experiment reported by Jacoby, Toth, and 
Yonelinas (1993). Subjects were exposed to two 
lists of words, the first of which subjects were told 
to remember and was presented aurally. The second 
list was presented visually, and subjects were told to 
read the words aloud. During this second list, some 
subjects performed an additional attention-dividing 
task and others did not. The final recall test con- 
sisted of presenting word stems (e.g., mer-) and, 
in the inclusion condition, asking subjects to recall 
a word from either list that completed that cue; in 
the exclusion condition, they were instructed to 
specifically avoid completing the cue with a word 
that had been presented in either earlier study list. 
Table 24.1 shows the raw data for the inclusion and 
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well to the naturalistic circumstances that they are 
intended to simulate. 

Raw Performance and Model Estimates for Pre- 
viously Read Words on Tests of Recall Inclusion 
and Recall Exclusion as a Function of Atten- 
tional Condition 

- - 

Raw performance Model estimates 

Attention Inclusion Exclusion R A 

Full 0.61 0.36 0.25 0.47 
Divided 0.46 0.46 0.00 0.46 

- -  

Note. R is an estimate of the contribution of recollection 
to performance and A is an estimate of the automatic 
contribution of memory to performance. 

exclusion of words that were presented in the 
visually presented (second) list as a function of 
the attention manipulation. It also shows the val- 
ues of R and A, as reparameterized by Equations 
(3) and (4). Evident in those parameters is a very 
clear effect of attention on R but not A. It is from 
such results that we can conclude that the auto- 
matic effects of memory are relatively impervious 
to manipulations of attention, but  that the delib- 
erative, conscious contribution of recollection 
is not. 

To once again sound the drum that is the theme 
of this volume, certain conclusions are made possi- 
ble only by the theoretically motivated combination 
of multiple measures. Multimethod psychology 
refers to more than convergent and divergent valid- 
ity; in each of the examples outlined here, studying 

. . . .  . .- ~. - -  .. . . - .. 

individuals under different conditions or in differ- 
ent situations afforded a rich, multifaceted view of 

r h e l r  be%ivfor]ust as psychologists include multi- 
ple subjects in experiments to be able to generalize 
across individual differences and to examine effects 
owing to those differences, multiple methods or 
experimental circu~nstances allow the researcher to 
tease out elfects that underlie differences belween 
conditions (as in the final example given earlier) 
and additionally reduce the risk of being led astray 
by single oddball conditions that don't generalize 

I 

ASSESSING THE ADEQUACY OF FORMAL 
MODELS OF COGNITION 

In each of the examples outlined in the previous 
section, I have attempted to illustrate how the theo- 
retical gain obtained from the combination of mul- 
tiple measures was greater than the sum of the parts 
(the individual measures). Lurlung within this 
apparently free lunch is a cost, however. In each 
case, we needed to specify a theory about the rela- 
tionships among our measures before we could 
combine them. The cost of combining measures is 
measured in the assumptions that we make in spec- 
ifylng that theory. In particular, if our theory is 
wrong, the parameters that we derive from its appli- 
cation may be meaningless or even misleading. 

In addition, more accurate theories are often 
derived from a careful evaluation of the specific 
points at which prior attempts fell short. Thus, it is 
critically important to subject such theories to eval- 
uation and cull the herd appropriately. This section 
briefly reviews recent advances in and discussions 
of our understanding of how such evaluatiors can 
be conducted. 

Probably the most common application of model 
testing involves the logic of goodness-of-fit statisti- 
cal tests. Such tests assess the extent to which a 
specified model can handle a particular set of data. 
One familiar application of such a procedure 
involves the comparison of obtained frequencies of 
events to a set of predicted frequencies. The predic- 
tions come from a model that can make any num- 
ber of assumptions about the relationshil>s between 
the event types to one another (often, that they are 

-- 

independent). The sum of squared differences 
- 

between the expected and obtained frequencies is 
the building block for a test statistic that can be 
compared to an appropriate chi-square distribution. 

A more co~nplex model's ability to account for a 
pattern of data can be summarized wit11 a similar 
measure, such as Root Mean Squared Error or Per- 
cent Variance Accounted For. Such measures pro- 
vide a good basis for ruling out a model: If no 
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combination of parameters within a model can 
allow it to predict a result that is commonly 
obtained, then something about that model is 
clearly wrong. To draw on an earlier discussion, if 
z-transformed ROC functions for recognition mem- 
ory were typically curvilinear, then we would want 
to reconsider the assumption that the evidence dis- 
tributions are Gaussian in form. 

Unfortunately, unlike theories in physics, psy- 
c h o l o ~ e o r i e ~ ~ t y p i c a l l y ~ @ i e f  lexibE-G - 

much so, in fact, that there is probably a greater 
utility in using tools that rule out models not on 
what they fail to predict, but rather how much 
they can predict for which there is no evidence 
(Roberts & Pashler, 2000). If our theory of the 
form of the zROC was so general that i t  could not 
rule out any functional structure, we should be 
considerably less impressed by its ability to 
account for the correct linear form. Thus, more 
appropriate model-testing mechanisms emphasize 
not only the ability of the model to account for a 
pattern of data, but also its ability to do so simply, 
efficiently, and without undue flexibility. These 
mechanisms deal with such concerns by incorpo- 
rating factors such as the number of free parame- 
ters (Akaike Information Criterion [Akaike, 
19731; Bayesian Information Criterion [Schwartz, 
19781) or even the number of free parameters and 
the range of function forms that the model can 
take (Bayesian Model Selection [Kass & Raftery, 
19951; Minimum Description Length [Hansen & 
Yu, 20011). These approaches have clear advan- 
tages over simple goodness-of-fit tests, on which 
more complex models have an inherent fitting 
advantage simply by virtue of their ability to over- 

.-  - fit data that in psychological experiments typi- 
tally include a large amount of sampling error 
(Pitt & Myung, 2002). 

What Maltes Theory Useful? 
So far, this discussion has emphasized accuracy and 
flexibility as the principal bases for model evalua- 
tion. We want our theories to predict events that 
happen and not to predict things that don't; if our 
theory does so with a reasonable degree of success, 
then we covet it and attempt to defend it against 
outside claims of inadequacy. 

I want to propose a slight amendment to such a 
system, however. I believe that models can also be 
tremendously useful when they fail to provide an 
account for certain data. Models-particularly well- 
specified mathematical ones-are useful in part 
because they are putative isomorphisms for the sys- 
tem under investigation. Consider, for example, the 
question of how to compare the weights of objects. 
Masses of objects can only be directly compared 
- .. - . -. 
with an accurate balance. Yet if I want to know 
whether this APA-produced tome outweighs other 
recent books in this domain, I don't need to tmck 
my library over to a chemistry lab to use their bal- 
ancing scales. Rather, the mass of each object is rep- 
resented as a real number, and I know that the set 
of ordinal operators in mathematics (including > 

and <) correspond to "weighing more than" and 
"weighing less than." To return from this tortured 
analogy back to the original diatribe, models are 
useful in part because they provide a different rep- 
resentational system with which to talk about the 
components of the theory. As discussed early in this 
chapter, cognitive components are notably vague; 
grounding a theory in a more formal representa- 
tional system, such as mathematics, allows us to 
use the sophistication of that system to derive rela- 
tionships beyond what our intuitions would have 
provided us with-even when that formal system is 
not a fully accurate representation. 

One excellent example of how model accuracy 
and model utility occasionally diverge is provided 
by the Rescorla-Wagner model of learning (e.g., 
Rescorla & Wagner, 1972). That theory was itself 
an attempt to address shortcomings of previous 
views of associative learning that postulated that 
contingency of events in time and space was a suffi- 
cient (and necessary) precondition for the learning 
of an association between the events (e.g., Bush & 
Mosteller, 1951). A number of important results 
were obtained in the late 1960s that demonstrated 
the inadequacy of this view by demonstrating con- 
ditions in which animals apparently did not learn 
an association between two stimuli despite highly 
contingent presentations of the stimuli. One illus- 
trative and fundamental phenomenon is that of 
bloclzing, in which an organism first learns that A 
predicts B and later that the compound AC also 
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predicts B. Blocking is revealed by the fact that the 
organism does not engage in typical behaviors 
preparatory for the onset of B when exposed to C 
alone (Kamin, 1969). The Rescorla-Wagner model 
explains this result by assuming that an organism 
learns about the relationships between events only 
to the degree that outcomes are unpredictable: 
When an event is expected on the basis of alterna- 
tive cues (e.g., A predicts B), then nothing is 
learned about the relationship between additional 
cues and that outcome (e.g., C and B). Formally, 
the model can be stated in a reduced form as 

in which AAl represents the change in the strength of 
the learned association between two stimuli on Trial i, 
p represents a learning parameter related to the inten- 
sity and associability of the two stimuli, ;l represents 
an asymptotic learning parameter related to the out- 
come event, and most importantly, CAI represents the 
summed associative strength between all available 
stimuli and the outcome event in question. When this 
value is close to A, the term inside the parentheses 
approaches 0; thus learning is weak or nil. 

It would be no exaggeration to state that this 
model has been the single most influential theory of 
learning since its publication. It has been imported 
into (or coevolved with) many other domains, 
including human contingency learning and causal- 
ity judgments (e.g., Chapman & Robbins, 1990; cf. 
Cheng, 1997) and artificial learning in neural net- 
works (as the influential delta rule; Rumelhart, Hin- 

1 ton, & Williams, 1986; Widrow & Hoff, 1960). It 
can account for a huge number of basic phenomena 

- in associative learning (Dickenson & Macintosh, 
1978; Miller, Barnet, & Grahame, 1995; Walken- 
bach & Haddid, 1980) and -- consequently has been 

I the primary vehicle for the discussion of phenom- 
ena in animal learning in introductory textbooks. 

These successes notwithstanding, there are 
numerous examples of how the model fails to 
account for behavior in the very paradigms it was 
designed for. To draw again on the example of 
blocking, as described earlier, remember that the 
model explains blocking as a deficit in learning- 
the animal fails to respond to the blocked stimulus 

because nothing was learned about the relationship 
of that stimulus to the outcome. Certain phenom- 
ena indicate that this assumption is almost certainly 
false. For example, additional training following the 
traditional blocking procedure that presents the 
blocking stimulus (A, in the preceding example) 
paired with the absencc of the outcome stimulus 
(C) can lead to retroactive unblocking, in which 
responding increases to the B stimulus, even though 
there were no additional presentations of that B 
stimulus (Arcediano, Escobar, & Matute, 2001; 
Blaisdell, Gunther, & Miller, 1999). 

From a model-evaluation perspective, such data 
should lead us to cast out the Rescorla-Wagner 
Model as outdated and unsatisfactory. However, this 
approach ignores critical aspects of the scientific 
process; namely, the discovery of phenomena like 
retroactive unblocking was motivated in large part 
by the strong (and ultimately incorrect) predictions 
of the model. In other words, widespread under- 
standing of the model led researchers to devise par- 
adigms that tested its limits. In addition, certain 
generalities among the phenomena that contradict 
the model are only apparent in context of how the 
model deals with them inadequately (Miller et al., 
1995). Thus we see that models serve not only as 
isomorphisms for the systems we study, but also as 
motivating and organizational tools that enhance 
our progress toward understanding the mechanisms 
they purport to represent-even when they do so 
incorrectly. This approach to model-based psycho- 
logical science is well reflected in the quip that 
models should be your friends, not your lovers 
(Dell, 2004). You maintain them because of what 
they offer you, but you keep many of them and 
don't demand too much of any single one. 

INTEGRATING COGNITION AND 
COGNITIVE NEUROSCIENCE 

So far we have limited our discussion to (a) how 
the field of human memory has evolved because of 
the integration of multiple behavioral measure- 
ments, and (b) how the models that serve that 
function should be evaluated. Here I briefly con- 
front the question of 1iow to integrate behavioral 
measures with the types of data provided by 
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research in cognitive neuroscience. Let me warn the 
excitable reader that I offer no good answers to this 
question. I am not alone in that regard, but I do 
offer a few suggestions that might help guide future 
advances on this front. 

In particular, advances in medical imaging have 
brought to the forefront questions about the inte- 
gration of physiological data into cognitive theoriz- 
ing. The issues themselves - - - are - - quite old, in fact; 

- - . . - . 

researchers have used the electroencephalogram 
(EEG) and galvanic skin response (GSR) to address 
cognitive-like issues for about a century (Berger, 
1929; FerC, 1888; Tarchanoff, 1890). The advances 
alluded to refer primarily to measures that allow 
greater spatial precision in viewing the morphologi- 
cal structure of the brain, as well as the transient 
electrical, chemical, and hemodynamic events that 
occur during brain function. These techniques- 
both the new and the old-allow the construction 
of spatial and temporal maps of activity during the 
performance of different cognitive tasks. One tack 
to integrating cognition and neuroscience is a pri- 
marily exploratory approach. Using cognitive theory 
to compare tasks that differ in a single putative cog- 
nitive component, either parametrically or other- 
wise, allows the inspired cognitive neuroscientist to 
compare maps of brain activity and postulate a 
brain region or regions that are related to the 
manipulated cognitive component. 

Hidden within this approach is the notion that 
the brain is likely to have divvied up cognitive func- 
tions in the same manner as experimental psycholo- 
gists have. I fear that we have not had that kind of 
insight, but the approach is valuable nonetheless, for 
it allows for the evolution of cognitive neuroscience 
into a second, more mature phase of theoretical 
development. Using a I~ypothesis-testing approach,-- 
specific neural signatures known to accompany cog- 
nitive events are sought in paradigms in which there 
is theoretical debate about the contribution of those 
cognitive components to the behavior in question. 
For example, changes in blood flow are apparent in 
areas in Broca's area 17 during mental imagery (Le 
Bihan et al., 1993). In addition, "small" mental 
images elicit greater activation in posterior visual 
cortex, corresponding to foveal input, whereas 

"large" mental images elicited greater activation in 
anterior visual cortex, an area that represents input 
from the periphery of the eye (Kosslyn et al., 1993). 
In each of these cases, the researchers used estab- 
lished knowledge about brain function-in this case, 
that regions of occipital cortex code visual input 
from the eye-to address the question of whether 
visual imagery is spatial or propositional in format 

(Finke, ~~- . -  . 1980). ~ 

The evidence revealed that imagery 
engaged visual areas of the brain and is thus likely 
spatial in representation. Other recent research has 
used this approach to address whether people 
learned an association between visual and auditory 
stimuli by examining blood flow in visual cortex fol- 
lowing presentation of an auditory stimulus that had 
previously been paired with a visual stimulus (McIn- 
tosh, Cabeza, & Lobaugh, 1998). Many other exam- 
ples exist in the domains of perception, attention, 
memory, and language. 

As results from exploratory cognitive neuro- 
science increase the number (and validity) of 
known relationships between neural signatures 
and cognitive components, the more scientists 
interested in cognitive phenomena will be able to 
exploit that knowledge for the purpose of fur- 
thering cognitive theory. The back-and-forth 
between exploratory and hypothesis-testing 
approaches illustrates one way by which to inte- 
grate measures from the two domains. But i t  is 
worth noting that the distinction between brain- 
based and behavioral measures is at least partly 
artificial. If we measure a button press or a ver- 
bal output from a subject, we consider that 
measure behavioral. Yet at multiple physiological 
levels, events occur during that press or vocal- 
ization that are unique to that output. Muscular 
events in the arm or larynx, as well as neuronal 
events in  motor cortex, control those very 
actions that we measure behaviorally. Other neu- 
ral events combine to derive that pattern of effer- 
ent control given the input from sensory organs. 
No matter what the task, a continuum of events 
guides the physical input (in the form of light or 
sound waves, for example) into physical repre- 
sentations in the brain into physical output (in 
the form of muscular contractions). Whether we 
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measure those behavioral endpoints or the physi- 
cal events that precede and determine them- 
inside or outside the brain-the logic for the 
combination of multiple measurements remains 
the same. 

The endpoints of thls continuum will always be 
critical measures, however, no matter how precise 
our measurements of the intervening processes 
become. Just as it would be impossible to draw any 
meaningful conclusions about psychology without 
knowing anything about the physical stimulation to 
the subject, it is also quite difficult to do so without 
actually examining behavior. Many behavioral meas- 
urements carry with them an inherent dimension of 
performance quality that other intervening measures 
do not. If a manipulation enhances the speed or 
accuracy with which subjects perform a task, we are 
licensed to attribute to that manipulation an inter- 
pretation of quality-that it improves learning, or 
problem-solving speed, or attentional focus, for 
example. There is nothing inherently "better" from a 
cognitive perspective about more blood flow to a 
particular brain region, greater skin conductance, or 
higher levels of chemical uptake, even though such 
effects may well accompany behavioral effects that 
do allow such an interpretation. 

On the other hand, experimental tasks often suf- 
fer from a failure to approximate real-world circum- 
stances that elucidate the contribution of the 
cognitive capacity under study In part, this may be 
because of the contrived nature of the chosen 
behavioral measure. Researchers interested in lan- 
guage comprehension, for example, often measure 
the rapidity with which subjects can identify probe 
stimuli as words or nonwords as an index of the 

_ degree to which previously read sentences or heard__ 
utterances (related to those words) have been com- 
prehended. ClearlyLt~is_artificial task malies the 
laboratory study of language comprehension quite 
u~llike naturalistic language comnprehension. Cogni- 
tive neuroscience methods provide an opportunity 
to reduce the reliance on such tasks by allowing 
measurements in the absence of an overt behavioral 
task. For any given experimental sirnation, the 
choice between behavioral and brain-based meas- 
ures involves trade-offs, and as the astute reader 

might suspect, the combination of multiple types of 
measures across and within single studies often 
proves the most fruitful approach. 

EMPIRICAL EVIDENCE AND THE 
POSTULATION OF MENTAL SYSTEMS 

Recall that we began this chapter with a series of 
pithy comments about the ways in which cognitive 
psychologists derive evidence for theoretical enti- 
ties. That task begins with an analysis of empirical 
data and proceeds to a theoretical interpretation 
only through the lens of a particular model. 
Although we have not emphasized it here, i t  is 
important to remember that any comparison of con- 
ditions or measures assumes some underlying 
model, and that those comparisons that are simple 
do not necessarily reflect simplicity in that underly- 
ing model. 

Through our short tales in the first section, we 
discussed the theoretical interpretations of model- 
based analysis only as necessary. In this section, I 
outline rules that other researchers have used to 
guide the relation between theoretical parameters 
and theoretical entities. Consider the final example 
from the first section, in which perfonnance from 
multiple recall tasks was combined to yleld esti- 
mates of the contribution of deliberative recollec- 
tion (R) and automatic memory retrieval (A) to 
cued recall (Table 24.1). The manipulation of atten- 
tion had opposite effects on inclusion and exclusion 
probability, which made the raw data difficult to 
interpret. However, the model parameters told a 
very clear story: Attention affects recollection, but 
not automatic memory. This dissociation provides a 
first step toward the postulation that these two - - 

bases for responding actually represent different 
memory systems or different memory processes-_ 
What else is necessary? 

The primary basis for such postulation is the 
existence of coilverging multiple dissociations 
(Schacter & Tulving, 1994). The evidence that 
aging, for example, selectively impairs recollective 
but not auto~natic memory strengthens the case that 
the two are separate entities (e.g., Benjamin & 
Craik, 2001; Jacoby, 1999). In the context of animal 
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learning, Lorenz (1970) argued that imprinting was 
a fundamentally different process than that of nor- 
mal learning and pointed to various dissociations 
between the two, such as the presence of a critical 
period for the former, but not the latter (cf. Shettle- 
worth, 1993). 

Tulving (1984) argued that memory systems 
should be distinguished in large part on the basis of 
the information they store and the operations they 

-~. ~ . -. - . - - . 

perform on that information. Thus, procedural mem- 
ory, which governs the executions of actions and 
skilled performance, can be distinguished from 
declarative memory, which contains verbalizable 
knowledge. Procedural memory contains informa- 
tion about the rapid coordination of limb move- 
ments and thus maintains a unique information 
store. Declarative memory maintains information in 
sufficiently flexible form to allow inferential 
processes to act on propositions in memory and 
thus allows unique operations unavailable to proce- 
dural memory. These differences do indeed play out 
as a number of dissociations in both animals and 
humans (Squire, 1992). 

In addition, Tulving (1984) suggested that mem- 
ory systems be defined in part by their neural sub- 
strates. This is an important point, given the 
renaissance of cognitive neuroscience briefly 
remarked on earlier, and I wish to offer an alternative 
viewpoint as a final remark. The denouement of the 
argument is that there is no reason why brain systems 
and cognitive systems should be one and the same. 

But do not all the functions of cognition lie in the 
brain, and therefore shouldn't the structure of the 
brain be a reasonable playground for the construc- 
tion of cognitive theories? The answer is no, for the 
same reason that neither protein strings, nor mole- 
cules, nor atoms, nor quarks should be the building. 
blocks of a cognitive theory. Theoretical entities in 
cognitive psychology are only useful insofar as they 
allow a handy categorization of experimental 
results. Thus, despite the fact that habituation in 
the eye and in the ear take place in different brain 
regions, we nonetheless recognize a unifylng con- 
cept that unites the two forms of learning. 

A trickier question, however, is whether we are 
justified in postulating multiple cognitive compo- 
nents that exist in a single brain region. Consider 

the granddaddy of all distinctions in human mem- 
ory, that between episodic and semantic memory 
(Tulving, 1983). Episodic memory stores events 
from an autobiographical perspective; semantic 
memory stores facts and knowledge and contains 
no information about specific past episodes. This 
distinction has been among the most useful in mod- 
ern memory research and makes sense out of a 
huge number of empirical phenomena. Yet, numer- 
ous influential theories propose that the informa- 
tion underlying these two memory "systems" is one 
and the same. For example, Hintzman (1986) 
showed that a memory system that stored nothing 
more than specific individual events-in other 
words, its memory was exclusively episodic-could 
yield behaviors that were hallmarks for the postula- 
tion of semantic memory. Does such a demonstra- 
tion imply that the distinction is no longer useful? 
Of course not. Although it may well turn out the 
brain does not honor this distinction, there is no 
reason why a cognitive theory should not. Similarly, 
we can build a reasonable model out of integers and 
logic components of the way in which our desktop 
computer performs some computational task, 
despite the fact that the computer's own representa- 
tion is binary, and its logic components are nothing 
more than the arrangements of binary operators. 
There is no doubt that knowledge about the su-uc- 
ture and function of brain regions can and should 
inform cognitive notions about memory, but there 
is a danger is failing to recognize additional appro- 

- - 

priate levels of abstraction beyond the physical sub- 
strate and inappropriately besmirching theories that 
have desirable qualities. 

SUMMARY, 

In this chapter, I have provided several examples of 
how measurements can be combined via models to 
yield results that are more informative and reliable 
than the original measurements themselves. This 
technique must always be accompanied by rigorous 
model evaluation, lest the interpretation of the 
parameters be misled by incorrect assumptions 
about their relation to one another. These same 
techniques apply to measurements obtained from 
physiological properties of the brain; doing so will 
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allow the burgeoning field of cognitive neuro- may only become evident when the correct model 
science to accommodate more readily to the theo- is imposed on the data. These dissociations should 
ries of cognitive psychology. Finally, model-based not be taken to imply dissociations at the level of 
interpretations provide a particularly useful way of the brain, nor should different brain systems neces- 
seeking dissociations that are the fundamental sarily influence cognitive theorizing. 
building blocks of cognitive systems. A dissociation 


