

Installing and Using Python LISA

Version 1.00, 08/27/07

©John E. Hummel, 2007
University of Illinois

Table of Contents

System Requirements 2
Installing Python LISA 2
About this Manual 2
Running LISA 3
The LISA Main Menu 5
Writing Simulations (SYM Files) 9
Interpreting the Model’s Output 20
Parameters 29
Components of the Code (.py files) 33
Version Notes and Miscellany 33

Hummel’s Python LISA Page 2

System Requirements and Installation

System Requirements:

Macintosh Operating System 10.3 or later. (The model will probably also run under
Windows if you have PyGame and Python but I can’t tell you how to set it up.)

Python 2.4 (for Macintosh; note that Python 2.5 is the most recent version, but it does not

support PyGame)

PyGame (a set of graphical routines for Python, included with this package)

Installation:

1) Install Python 2.4: go to http://www.python.org/ or
http://pythonmac.org/packages/py24-fat/index.html

2) Install PyGame (included in this package in the folder PygameInstalls; there are a

total of three applications; install them in the order listed in the folder; you may or may
not need the third one)

3) Place the folder PyLISA into:

HardDrive:/library/frameworks/python.framework/versions/2.4/

where “HardDrive:” is a variable to be replaced by the name of your hard drive; the rest
of the path name is literal.

About this Manual

This instruction manual was written under the assumption that the person reading it has at least
some familiarity with the LISA model. It therefore uses some LISA-specific jargon (e.g.,
“mapping connection”, “self-supervised learning”, “SP”, etc.) without defining it. If you are not
familiar with LISA (e.g., if any of the preceding jargon surprised or confused you), please see
Hummel & Holyoak (2003) in Cognitive Studies for an overview or Hummel & Holyoak (2003)
in Psychological Review for all the gory details. Both papers can be found at:
http://www.psych.uiuc.edu/~jehummel/publications.php

Note also that this manual was written for the version of LISA written in Python by John
Hummel. These instructions will not work for the version of LISA written in Python by Derek
Devnich.

Hummel’s Python LISA Page 3

Running LISA

1) Launch Terminal (you can find it in your Applications folder)

2) Go to :

HardDrive:/library/frameworks/python.framework/versions/2.4
/PyLISA/Vers1.00/

where “HardDrive:” is again a variable to be replaced by the name of your hard drive; the
rest of the path name is literal.

Your Terminal window will now look something like this:

Hummel’s Python LISA Page 4

3) At the prompt (%) enter: python lisa.py

Now your Terminal window should look something like this…

… except that it will initially be occluded by a large black window entitled “pygame
window”. Click on the Terminal window to bring it to the front and you should see
something like the image above.

The Terminal window is where you access the LISA Main Menu and its submenus.

The pygame window is where the network is displayed during a run, and where you issue

various directives (such as quitting, speeding up or slowing down the graphical
display, etc.) during a run of the model.

Hummel’s Python LISA Page 5

The LISA Main Menu

All file options are shown in parentheses next to (or embedded in) the option name. For example
(F)ile indicates that pressing the F key, followed by a carriage return, activates the File option
in the Main Menu.

File (F) allows you to specify a simulation (.SYM) file name. (SYM files are text files that

tell the code how to construct and run a simulation.)
For example, to choose the file lovetri7.sym, you would enter F <cr> at the LISA> prompt

(i.e., Main Menu) and then enter lovetri7 at the prompt file name (omit
suffix):

As the prompt indicates it is unnecessary (indeed, bad) to explicitly specify the .sym suffix.
(The code expects that suffix as a universal and so adds it itself.)

Once there is a file in memory its name is displayed next to the (F)ile option in the Main
Menu, e.g., (F)ile: lovetri7

Path (P) allows to specify a subdirectory path for reading .sym files and for writing output

(.run and .bat) files.
The code looks for all sym files in a folder called Data/ inside the main LISA folder (i.e.,

Vers1.00/ as of this writing). It also saves all output files to Data/. However,
within Data/ it is possible to create folders to house families of sym files. Several
such folders are included in this package.

The current subdirectory path is specified next to the (P)ath option in the Main Menu, e.g.,
(P)ath: Data/lovetri/

The code will save any output files to the same folder containing the sym file that generated
the simulation.

Subdirectories can be nested to arbitrary depth but they must all be located inside Data/.

Modify parameters (M) allows you to modify various parameters that control the model’s

operation. After entering M<cr> at the LISA> prompt, you will be asked to choose one
of three sub-menus:

(F)ile parameters allows you to modify parameters governing which kinds of details
are saved to the output (.run or .bat) file. I do not detail those parameters here
because they are fairly intuitive based on their names. The one that may not be
intuitive based on its name is Min Vertical Wt. to Save. This parameter
allows you to set the threshold on saving inferred object and predicate semantic units
to file: how large the weight from a semantic unit to an inferred object or predicate
unit must be in order to write the semantic unit’s name and weight to the output file.

(R)un parameters allows you to modify various parameters governing the model’s
operation. For more detail, see the section on Modifying Parameters.

(D)angerous parameters are those that govern the most basic nuts and bolts of
model’s behavior (primarily excitatory and inhibitory interactions between classes of
units) and which I do not recommend changing. Most of them have sweeping,
cascading and therefore largely unpredictable effects. Most of these effects can be
achieved more straightforwardly by modifying various parameters in the (R)un

Hummel’s Python LISA Page 6

parameters menu. For more details on the Dangerous Parameters, see the section
on Modifying Parameters.

Run (R) runs the model on whatever .sym file is currently in memory. (If there is a file in

memory, its name will appear next to the (F)ile: option in the Main Menu.) The
output of a single run is saved to a .run file whose file name is otherwise the same as
the name of the .sym file that generated the simulation. During a run, text output is
written to the Terminal window and, if desired, the network is displayed graphically in
the pygame window.

After you issue the (R)un command in the Main Menu, a submenu will appear in the
Terminal window asking whether you want a (g)raphic or (b)lind [i.e., sans
graphics] run. See Interpreting the Model’s Output for more detail.

Batch run (B) allows you to run a large number of simulations in batch (and without

graphical output, to maximize speed), saving the results to a .bat file. When you hit B
<cr> you will be taken to the Batch Run menu, which looks something like this:

Current Batch Sequence:

 Current Path: Data/
 (p) Change path
 (n) New batch element
 (d) Delete batch element
 (r) Run batch sequence

(a) Abort batch sequence

The purpose of this menu is to allow you to define a sequence of simulations to run in batch:

Which sym files to run, where to find them and how many times to run each one.
The Change path command (p) allows you to tell LISA where to find the sym files.
The New batch element command (n) allows you to tell LISA to run a sym file that

resides inside the Current Path. After you issue this command, you will be
asked to specify (a) a sym file name (give the file name without the .sym suffix) and
(b) how many times to run the simulation specified in the file. (Since LISA has
numerous stochastic components, it is often useful to run a simulation more than
once.) Note that you can change the path several times within a single batch
sequence, running sym files from a variety of different folders. The list of batch
elements you have defined will appear under the “Current Batch Sequence:”
header above the menu.

Delete batch element (d) allows remove an element from the batch sequence (e.g.,
because it contains an error, or for some other reason, you have decided you do not
wish to run it).

Run batch sequence (r) runs the files specified in the sequence the specified
number of times each. Before the run commences you will be asked to provide a file
name for saving the results of the batch simulations. Do not include the suffix .bat;
LISA adds it automatically. Note that if you want to specify a particular part for

Hummel’s Python LISA Page 7

saving the .bat file, then you must include it as part of the name (e.g.,
“lovetri/lovetri7”).

Abort batch sequence (a) aborts the run.

View network (V) displays all the nodes in the network, along with their interconnections
and the sequence of events specified in the sym file, in the Terminal window. This
function is useful for debugging sym files because it tells you what The Code thinks the
sym file says (which may or may not be the same as what You think it says).

Empty memory (E) disposes of all units, connections, etc. and will initializes the graphical

display. Doing so allows you to load and run one sym file, and then load and run a
second sym file without having to quit LISA in between. (If you load a second sym file
without emptying memory in between, the second network will be built on top of the
first.) As of this writing, this function is still potentially buggy… which is to say it seems
to work as best I can tell, but there may be surprises. Please email me at the address at
the end of this document if you discover a bug.

Screen size (S) allows you to resize the pygame window.

Show Notes (N) displays the latest research/development notes, including problems that

remain to be solved, etc. I apologize in advance for any profanity contained therein.

Go: path/filename with/without graphics (G) sets the Path to path, the File

Name to filename and then runs the network either with or without graphics (as
specified in the string following Go:). The value of path, filename and
graphics/no-graphics are specified near the beginning of LISA.py (the master
file for the Python implementation of LISA). For example:

go_path = 'lovetri/'
go_file_name = 'lovetri8'
go_use_graphics = True

would run lovetri/lovetri8.sym with graphics turned on. The (G)o option is a convenient
way to run a simulation with a single command rather than having to enter the path etc.
every time.

Quit (Q) quits LISA, returning you to the Terminal.

Hummel’s Python LISA Page 8

Runtime Directives: It is also possible to issue a few directives in the pygame window during a
run. In contrast to the menu items in the LISA Main Menu (in the Terminal), it is not
necessary to follow these directives with a carriage return:

s toggles between the “speed” and “step” modes of updating. In “speed” mode, LISA
repeatedly updates the state of the network and the graphical display without user
input. In “step” mode, the model updates only a few iterations per button-press (or
mouse movement) by the user. Step mode is useful for watching the model work in
excruciating detail.

- (the minus key) slows the simulation down by increasing the rate at which the
graphical display is updated. Each successive press doubles the graphic refresh rate
(i.e., cuts in half the number of network updates [iterations] per graphical update). At
the slowest speed, the graphical display is updated every iteration.

= (the equals key) speeds the simulation up by decreasing the rate at which the
graphical display is updated. Each successive press halves the graphic refresh rate
(i.e., doubles the number of iterations that go by between graphical updates).

q quits the current simulation, returning you to the Main Menu in the Terminal (it is
necessary to click on the Terminal to bring it to the front).

esc quits the current simulation and also quits out of LISA.
 (the arrow keys) allow you scroll the display window in the

corresponding direction. Note that the Window, not the items displayed therein,
follows the direction of the arrow. For example, the UP arrow moves the window
view up, and hence the objects in the window down.

Hummel’s Python LISA Page 9

Writing Simulations (SYM files)

Simulation files are plain text files with the .sym suffix. (Read: Do not write them in Word and
save them as Word files. They must be plain text.) I have included several examples in the
Data/ folder, including Data/syntax.sym, which illustrates many (but not all) of the sym
file syntax conventions. Checking out other included simulations will reveal other features.

A sym file tells LISA how to construct a network (i.e., which propositions to build in which
analogs, which semantics to connect to which objects and predicates, etc.) and what to do with
that network once it’s built.

build.py (henceforth simply “Build”) is the simulation parser, i.e., the code that reads the sym
file and constructs the network and the simulation sequence. In the following, I will use both
upper- and lower-case letters to describe commands, etc., for clarity. However, Build is not
case-sensitive: everything except the text following Note: (see below) is immediately
converted to all uppercase. Thus, it is not necessary to follow the case conventions used in the
commands below. Similarly, in the sample sym files, commands are indented systematically
(e.g., all commands having to do with a given analog are indented under the command that
initiates the creation of the analog). These conventions are strictly for readability and are not
required by Build.

I recommend that you open one of those sample files and refer to it as a concrete example as you
read these instructions.

A NOTE ABOUT PUNCTUATION IN SYM FILES: I am not a professional
programmer, and I am not good at writing text parsers. For this reason, in your sym files
all necessary punctuation must be separated from any commands or unit names by
spaces (one space is sufficient). That is, punctuation must not touch text. Punctuation
that touches text is interpreted, not as punctuation, but as part of the text. I’m sorry about
that, but it’s just the way it is. When you start writing sym files you will forget this and
Build will crash when it fails to find the punctuation you thought you had put there. I
apologize in advance that this will happen to you. But you’ll survive it. And you can’t
say I didn’t warn you.

Sym files are organized hierarchically. Build accepts six commands at the top of the hierarchy.

Top-Level Commands:

Note: designates text to be copied from the sym file to the output (.run or .bat) file. All
text following the Note: command (on the same line) is copied verbatim into the
output file. Use it to write notes to yourself describing the sym file (e.g., “This is my
attempt to simulate…” or “This is the same as bla bla except for the value of the bla
bla parameter…”). (Note that in the case of Note:, the colon is not punctuation; it is
part of the command. That’s why you can (indeed, must) run it up against the word
Note.)

Hummel’s Python LISA Page 10

Parameters allows you to set runtime and file-saving parameter values in the sym file
(i.e., so that you don’t have to do it from the Main Menu). Any parameter you do not
set in the sym file will simply adopt its default value (or the value you set from the
(M)odify parameters option in the Main Menu). Note that any runtime
parameter will adopt the last value to which it was set: If you set the parameter in the
(M)odify parameters menu and then read the sym file, then the model will run
with the value set in the sym file; if you read the sym file and then modify the
parameter in the (M)odify parameters menu, it will run with the value set in
the menu. Once you issue the Parameters command in the sym file, you can
name the parameter(s) you wish to set, each followed by a parameter value. You must
tell Build you are done modifying parameters by issuing the command Done. The
syntax for changing a parameter value in the sym file is:

Parameters

<parameter1_name> <parameter1_value>
<parameter2_name> <parameter2_value>
…
<parametern_name> <parametern_value>

Done

The commands (parameter names) you can issue are listed below, along with their
default and legal values. A legal value of “0…1 (+)” means “any positive value is
logically possible, but values greater than 1 are weird and may have weird effects”.
For an explanation of what each parameter does, see the section Modifying
Parameters.

These commands set runtime parameters an thus affect the model’s behavior:

 Default Legal
Command/Parameter: Value: Values:
UnlimitedWM False True/False
SemanticNoise 0 0…1 (+)
SemanticDeath 0 0…1
Attention 1 0…1 (+)
DriverInhibition 1 0…1 (+)
RecipInhibition 1 0…1 (+)
HebbLearningRate 1 0…1 (+)
BailUponSettling False True/False
MappingAalgorithm VERS142 VERS142/H&H9703
WithinGroupSupport 1 -∞…∞

These parameters determine what does and does not get saved to the output (.run or
.bat) file at the end of a run:

 Default Legal
Command/Parameter: Value: Values:
SaveGroupHebbs True True/False
SavePropHebbs True True/False

Hummel’s Python LISA Page 11

SaveSPHebbs True True/False
SaveOPHebbs True True/False

{ (a left curly-brace) designates a comment. Build ignores all text following a { (on the

same line). In contrast to notes, comments are not copied into the output file.

Analog <analog_name> tells Build to start constructing a new analog with the name

<analog_name>. For example in response to Analog Source Build will create
a new analog object with the name “Source”. Propositions, objects, predicates and
groups (i.e., the stuff that the units in LISA represent) all live inside specific analogs,
so the Analog command must be issued before these units can be defined (as
elaborated below).

Done tells Build that the definition of the current analog (or the simulation sequence, as

described below) is complete. If your sym file has issued the Analog command
(followed by definitions of the units in an analog), then Done must be the next top-
level command issued (otherwise Build will either report an error or crash or both).
In other words, your sym file must finish defining one analog before moving on to
define the next, or defining the simulation sequence.

Sequence tells Build to start defining the simulation sequence, i.e., the set of instructions

telling the model what to fire when, when to update the mapping connections, etc.

Analog Construction Commands:

After you issue the Analog <analog_name> command, Build expects you to issue
either the Done command (ending the definition of the analog) or one of four high-
level analog definition commands:

DefPreds tells Build to start defining the units that will represent the roles of the

predicates in the current Analog. Once DefPreds is issued, Build expect the next
thing it encounters (at the top level within DefPreds) to be either the word end or the
name of a predicate. In other words, if Build is not in the middle of defining a
predicate (as elaborated below) and it encounters the word end, then it will think it is
done defining predicates in the current Analog. An unfortunate consequence of this
convention is that you cannot name a predicate “end”. (If you need such a predicate,
try something related but different, such as “the_end”.) Each predicate definition
ends with a semicolon. There are two ways to define predicates: auto-coding and
hand-coding.

Auto-coding a predicate: Auto-coding is easier and than hand-coding but gives you less
control over the semantic coding of each role of the predicate. To auto-code a
predicate, write the name of the predicate, followed by the number, n, of roles,
followed by the name of each semantic unit to be attached to the roles. Build will
create n predicate (role) units, numbering each according to its place (first,
second, etc.), create n copies of each named semantic feature, numbering each

Hummel’s Python LISA Page 12

according to its place, and connect the predicate (role) units to the corresponding
semantic units.

For example:

DefPreds
 Loves 2 strong positive emotion loves ;
End

will create two predicate (role) units:

LOVES1 connected to the semantics STRONG1, POSITIVE1, EMOTION1, LOVES1.

and

LOVES2 connected to the semantics STRONG2, POSITIVE2, EMOTION2, LOVES2

Note that the predicate definition ends with a semicolon. (And note that the semicolon
does not touch the text!)

Be aware that auto-coding a predicate results in predicate roles with non-overlapping

semantic units. For example, the semantic units connected to LOVES1 above
are completely separate from those connected to LOVES2.

Hand-coding a predicate: Hand-coding allows you to specify exactly which semantics

are connected to each role of a predicate. To hand-code a predicate, specify the
predicate’s name, skip the number, n, of roles (or use 0), and then specify the
semantics defining each role inside square brackets.

For example:

DefPreds
 Loves [strong1 positive1 emotion-agent loves1]

 [emotionpatient loves2 beloved] ;
End

will create two role units:

LOVES1 connected to STRONG1, POSITIVE1, EMOTION-AGENT, LOVES1

and

LOVES2 connected to EMOTIONPATIENT, LOVES2, BELOVED

Note that each role is closed with a right square bracket and the predicate definition
ends with a semicolon. (And note that the punctuation does not touch the
text!)

Hummel’s Python LISA Page 13

end if encountered outside the definition of a predicate (i.e., after a semicolon), ends

the definition of predicates in the current Analog.

DefObjs tells Build to start defining the units that will represent the objects in the current
Analog. Once DefObjs is issued, Build expect the next thing it encounters (at the top
level within DefObjs) to be either the word end or the name of an object unit. In
other words, if Build is not in the middle of defining an object (as elaborated below)
and it encounters the word end, then it will think it is done defining objects in the
current Analog. As with predicates, an unfortunate consequence of this convention is
that you cannot name an object “end”. Each object definition ends with a semicolon.
The first word in each object definition is interpreted as the name of the object unit
and every word after that (preceding the semicolon) is interpreted as the name of a
semantic unit connected to that object. For example:

DefObjs
 John human adult male john ;

Mary human adult female mary ;
End

will create two object units:

JOHN connected to the semantics HUMAN ADULT MALE JOHN

and

MARY connected to the semantics HUMAN ADULT FEMALE MARY

DefProps tells Build to start defining propositions in the current Analog. Note that you
must define all the predicates and objects to which an analog’s propositions will refer
before defining the propositions themselves. Each proposition definition starts with
the name of the proposition itself, followed by the name of the predicate, an open
parenthesis, the names of all the proposition’s arguments (which can either be objects
or propositions you have already defined), a close parenthesis, and finally a
semicolon. Note that the number of arguments must agree with the number of places
in the predicate as you defined it in DefPreds. Indicate that you are done defining
propositions with the command End. For example:

DefProps
 P1 Loves (John Mary) ;
End

constructs the proposition loves (John, Mary) in LISAese. It will consist of one P unit
(P1) and two SPs (SP1.1 and SP1.2). SP1.1 will connect to LOVES1 (constructed in
DefPreds) and JOHN (constructed in DefObjs) and SP1.2 will connect to
LOVES2 and MARY. Each of these predicates and objects will have the semantic

Hummel’s Python LISA Page 14

features assigned to them in DefPreds and DefObjs, respectively. (Note how the
words in the above syntax do not touch the necessary punctuation: () and ;.)

By default, Build assigns each proposition and importance value (i.e., pragmatic
centrality; Holyoak & Thagard, 1989) of 1.0. An optional command, not shown in
the example above, allows you to define a proposition’s importance to a non-default
value in the sym file. To do so, simply state the importance after the close paren and
before the semicolon. For example:

DefProps
 P1 Loves (John Mary) 10 ;
End

gives P1 an importance value of 10. There is no necessary bound on a proposition’s
importance (i.e., they can be as large or small as you wish), but assigning negative
importance values is not advised as it may result in a division by zero error. (The
algorithm for random firing divides a quantity by a function that includes a sum of
importances, which can in principle go to zero if some of those importances are
negative.)

If one proposition takes another as an argument, then the argument proposition must
be defined before it is referred to by another proposition. For example, as long as
“knows” and “Bill” are defined (in DefPreds and DefObjs, respectively), then:

DefProps
 P1 Loves (John Mary) ;
 P2 Knows (Bill P1) ;
End

will result in a perfectly acceptable hierarchical proposition stating that Bill knows
that John loves Mary: knows (Bill, loves (John, Mary)). By contrast:

DefProps
 P1 Knows (Bill P2) ;
 P2 Loves (John Mary) ;
End

will result in a run-time error.

DefGroups tells Build to start defining groups of propositions (and of other groups).
Groups are units that allow you to group propositions into meaningful sets within an
analog (e.g., into causal chains, etc.). They are a new addition to LISA and we have
not yet fully worked out the theory of how they should work. As a result, Build
probably allows you to do some things that you (or we) may later discover are ill-
advised. (For example, you can currently connect a group both to propositions and to
other groups. I suspect it may be better to define groups in a strict hierarchy so that a

Hummel’s Python LISA Page 15

given group connects either to propositions or to lower-level groups but not both. We
shall see.)

After you issue the DefGroups command, each group definition begins with the
name of the group. Within a group’s definition, it is possible to connect the group to
one or more propositions (the Props: command), one or more other groups (the
Groups: command) and one or more group semantics (the Semantics:
command). Each connection command ends with the % command, the definition of
a complete group ends with the %% command, and the end of DefGroups as a whole
ends with the end command. (In the following, recall that { denotes a comment so
that text following { is ignored by Build.)

For example:

DefGroups
 G1
 Props: P1 P2 %
 Semantics: cause %
 %% { ends the group def of G1
 G2
 Props: P3 %
 Semantics: effect %
 %% { ends def of G2
 G3
 Groups: G1 G2 %
 Semantics: cause-relation %
 %%
end { def groups

defines three groups: G1 is connected to proposition units P1 and P2 and to the group
semantic “cause”. (Group semantics are completely separate from object and
predicate semantics. Thus, the group semantic “cause” is a separate unit from any
predicate or object semantic unit called “cause”.) G2 is connected to the proposition
P3 and the group semantic “effect”. G3 is connected to groups G1 and G2 and to the
group semantic “cause-relation”. Together, groups G1…G3 represent the idea that
P1 and P2 jointly cause P3. (This knowledge can also be represented more explicitly
using propositions; this group-based representation is a quasi-explicit representation
of the causal relation.) (Why I chose to end the parts of a group definition with a %
rather than a ; I do not recall. This convention may change in future versions of the
code.)

You will find that one of the most common uses of groups is to define causal
relations, as in the above example. I recommend using the general structure above to
represent causal groups, with one group for the cause, another for the effect and a
third to link the cause to its effect. A much more efficient way to generate the
structure above is to issue the Cause command inside DefGroups:

Hummel’s Python LISA Page 16

DefGroups
 Cause (P1 P2) (P3) 1.0 ;
end { def groups

will produce exactly the same group structure as the 15 lines of SYM file code above,
except that it will name the groups C1, E1 and CE-1, rather than G1, G2 and G3,
respectively. That is, C1 (the cause group) will be connected to P1, P2 and the
semantic CAUSE; E1 (the effect group) will be connected to P3 and the semantic
EFFECT; and CE-1 will be connected to groups C1 and E1, to the semantic CAUSE-
EFFECT and to one or more semantic units representing its causal strength. The 1.0
after the second close parenthesis represents the causal strength (on a scale from 0 to
1). It is an optional parameter; if left out, Build will assign a causal strength of 1.0 by
default. LISA represents causal strengths as connections from the top-level group
(e.g., CE-1) to causal strength (CS) semantic units. For example, a causal strength of
1.0 is represented as a connection of 1.0 to the semantic unit CS_1.0 (“causal strength
1.0”); a strength of 0.9 would be represented as a connection to CS_0.9; and a
strength of 0.95 would be a connection of weight 0.5 to CS_0.9 and a connection of
weight 0.5 to CS_1.0 (i.e., causal strength is coarsely coded on the semantic units).
Note that this scale does not currently allow negative (i.e., preventive) causal powers.
I hope to add this ability in the near future. Note that Build automatically names
these groups for you (e.g., if you define a second and third causal relations the
resulting groups will be named C2, E2, CE-2 and C3, E3 and CE-3, respectively),
which is convenient, but it means you need to keep track of the names it generates for
use in defining sequences (as discussed below).

Sequence Construction Commands:

After you issue the Sequence command, Build expects you to issue either the Done
command (ending the definition of the simulation sequence) or one of eight high-
level sequence definition commands:

Driver=[index] tells Build to designate Analog[index] as the driver. Indices are

assigned to analogs in the order in which they are defined. Note that Python indexes
starting at zero, so the first analog you define will be Analog[0], the second will be
Analog[1], etc.

Recip=[index1 index2… index-n] tells Build to designate Analogs index1…

index-n as recipient analogs. Typically there will be 0 to 2 recipient analogs: During
analogical retrieval all analogs (except the driver) will be in LTM, so there will be no
recipients. During analogical mapping and inference there will be one recipient (the
target). And during inference and schema induction there will be two (the recipient
and the emerging schema). Although I have never found it necessary to have more
than two recipients at a time, the code will allow you to designate as many as you
like. Be aware, however, that LISA only learns mapping connections to/from units in
the driver, not among recipient analogs. Thus, if Analog 0 is the driver and Analogs
1 and 2 are recipients, LISA will learn mapping connections between 0 and 1, and
between 0 and 2, but not between 1 and 2. As of this writing (July 24, 2007) analog

Hummel’s Python LISA Page 17

retrieval (described in Hummel & Holyoak, 1997, Psych. Review) has not been
implemented in Python LISA.

SSL_On tells LISA to license self-supervised learning (i.e., for analogical inference and

schema induction) regardless of the state of the mapping between the driver and the
recipient(s).

SSL_Off tells LISA to prohibit self-supervised learning (i.e., for analogical inference and

schema induction) regardless of the state of the mapping between the driver and the
recipient(s).

SSL_OK tells LISA to figure out for itself whether to license or prohibit self-supervised

learning as a function of each recipient’s mapping to the driver.

SIM_On tells LISA to compute the similarity between the driver and the recipient(s). This

computed similarity does not affect the model’s behavior. It is only a reported
“similarity judgment” for the benefit of the modeler.

SIM_Off tells LISA to stop computing similarity. By default, similarity computation is off.

Once it is turned on, it remains on until the SIM_Off command is encountered.
When it is on, similarity is computed each time the mapping connections are updated.

Order=[<various arguments>] tells Build to define the order in which

propositions fire. Once Order=[is issued, there is a variety of ways to tell
Build/LISA to set the firing order of propositions. The simplest is just to tell it the
exact firing order. For example:

Order=[P1 h P2 h]

tells LISA to fire P1, then update the mapping connections (the h is the directive to
update the mapping connections), then fire P2, then update the mapping connections
again. Any propositions that fire between updates of the mapping connections are in
the phase set together and are effectively processed in parallel. For example, the
instructions above place P1 and P2 into separate phase sets, processing P1 fully
before moving onto P2 (so that the mappings discovered for P1 stand to affect those
discovered for P2). By contrast:

 Order=[P1 P2 h]

places P1 and P2 into the same phase set, processing them in parallel. If you run
LISA using the neurally-plausible working memory option (the default), then there
will be a limit on the number of propositions the model can place into the phase set
together; beyond that limit, separate SPs will fail to fire in systematic asynchrony.
(The exact numerical value of that limit depends on the values of various parameters,
especially DriverInhibition.)

Hummel’s Python LISA Page 18

Telling LISA exactly what to fire when is a kind of “hand-holding” that is often
useful in the early stages of simulation (and code) development. However, once
you’ve got your simulation to the point where you can understand how it works, it is
often more useful to allow the model to set its own firing order based on the
importances of, and support relations among, its propositions. One way to do so is to
designate a random firing order. For example:

Order=[R (10 1)]

tells LISA to fire 10 phase sets in a random order (influenced by their importances
and the support relations among the propositions), placing one proposition into each
phase set. In general, the syntax:

Order=[R (n p)]

tells LISA to fire n phase sets in a random order, placing p at a time into each one. In
between complete hand-holding and completely random firing, it is also possible to
tell LISA to do group-based random firing:

Order=[G1 (n p)]

tells LISA to fire n phase sets composed of propositions belonging to group G1
(chosen in a random order), placing p propositions into each phase set. Note that this
command is hierarchical. For example, imagine that G3 has no propositions of its
own, but instead takes G1 and G2 as members, where G1 has P1 and P2 as members
and G2 has P3 as a member. In this case, the command:

Order=[G3 (n p)]

tells LISA to fire n phase sets chosen from propositions P1…P3 (i.e., the members of
G1 and G2, which are members of G3) placing p of them into each phase set.

To place fire control into the hands of causal groups defined using the Cause
command (as discussed above) you’ll need to keep track of the names Build
automatically assigns to those groups. (Recall that Build names top-level causal
relation groups (i.e., those linking cause groups to effect groups) CE-i, where i is the
index of the group, e.g., CE-1 for the first, CE-2 for the second, etc. Thus, for
example,

Order=[CE-1 (5 1)]

tells LISA to fire 5 phase sets chosen from the propositions belonging to CE-1 (and
its member groups, C1 and E1), placing 1 proposition into each phase set.

Of course, these conventions can be combined in any way you like. For example:

Order=[P1 h P2 h G1 (3 1) R (10 1)]

Hummel’s Python LISA Page 19

says, “fire P1, then update the mapping connections, then fire P2, update the mapping
connections, then fire three props belonging to group G1 (in a random order), placing
one proposition into each phase set, then fire 10 props in a random order, placing one
at a time into the phase set.”

Combining all these ingredients, here is a sample sequence:

Sequence { tell Build to define the sequence
 SIM_On { turn similarity-computation on

Driver=[1] { make Analog 1 the driver
Recip=[0] { make analog 0 the recipient
Order=[P1 P2 h R (2 1)]
{ the above first fires P1 and P2 in the phase set together
{ then two props, randomly chosen, each by itself in the phase set
Driver=[0] { make Analog 0 the driver
Recip=[1 2] { make Analogs 1 and 2 the recipients
SSL_OK { make LISA decide when to initiate ssl
Order=[G1 (3 1)]{ fire three propos from G1 randomly

Done { with the sequence and the whole sym file

Hummel’s Python LISA Page 20

Interpreting the Model’s Output

Graphical Output (pygame window):

This is a screen shot of the entire pygame window on iteration 208 (i.e., very early in the run) of
a run of lovetri/lovetri7. Rectangles are units. The top cluster of colored rectangles are
the units in “Amy&Bill” (the source analog, and at the time of this screen shot, the recipient).
The middle cluster of rectangles is the “Abe&Beth” analog (the target, and in this screen shot,
the driver). The bottom cluster of white rectangles are the shared semantic units. This image is
pretty low-resolution, so let’s zoom in to look at the units more closely…

Hummel’s Python LISA Page 21

This image is a close-up of the “Amy&Bill” (source and, currently, recipient) analog. Orange
units are group units (G1…G3), yellow units are P (proposition) units, blue are SPs, green are
predicate units and red are object units. (Propositions that are currently acting as arguments to
other propositions are depicted in red, like objects, rather than yellow.) Each rectangle shows the
unit’s name. SPs are named for the proposition to which they belong and their place in that
proposition. For example, SP1.2 is the second role-binding (the 2 after the period) of the first
proposition (the 1 before the period). The colored bar inside each rectangle shows the unit’s
activation. In the figure above, P1 is highly active (large yellow bar), P2 is slightly active, and
P3 is inactive. Rectangles with white frames are units that have been retrieved into working
memory; the others are in active memory but not working memory. Only units in working
memory can learn mapping connections.

This image shows the “Abe&Beth” (target and driver) analog at the same instant in time.
Currently, the “Abe+lover” role of the loves (Abe, Beth) proposition (P1) is firing. The
activations are “cleaner” in this analog than in the other because this analog is acting as the
driver rather than the recipient.

Hummel’s Python LISA Page 22

This image zooms in on a few of the semantic units (at a slightly later point in the simulation
than the previous images). As with the other kinds of units, the length a unit’s the bar is
proportional to the unit’s activation: “dummy” is highly active (activation approximately 1.0),
“female” is slightly less active (activation closer to 0.7 or 0.8) and “male” in inactive.

Hummel’s Python LISA Page 23

The Text Output to the Terminal:

At the beginning of each phase set, LISA writes identifying information to the Terminal window:

================================
Sequence element 0
 Driver: Abe&Beth
 Recip : Amy&Bill
 Fire control: props
 Phase set : P1 P2

It specifies the index of the sequence element (i.e., the current element in the list of phase sets to
run), the name of the driver analog, the name(s) of any recipient(s), “fire control” and the
contents of the phase set (the phase set depicted above contains both P1 and P2). “Fire control”
describes the basis for deciding which proposition(s) to place in the phase set. “Fire control =
props” means that the sym file specifies which propositions to place in the phase set (in the case
of the phase set depicted above, the command was Order=[P1 P2 h]). “Fire control =
random” means that props are chosen at random to fire (e.g., the command Order=[R (1
2)]). “Fire control = groups” means group-based random firing (e.g., the command
Order=[G1 (1 2)] or Order=[CE-1 (1 2)], etc.).

At the end of the phase set, LISA writes the current state of the mapping connections to the
Terminal window:

P1 <-> P1 wt = 0.992
SP1.1 <-> SP1.1 wt = 0.993
LOVES1 <-> LOVES1 wt = 0.982
AMY <-> ABE wt = 0.966
SP1.2 <-> SP1.2 wt = 0.993
LOVES2 <-> LOVES2 wt = 0.982
BILL <-> BETH wt = 0.980
G1 (L0) <-> G1 (L0) wt = 0.982
P2 <-> P2 wt = 0.992
SP2.1 <-> SP2.1 wt = 0.993
SP2.2 <-> SP2.2 wt = 0.993
CAT <-> CHAD wt = 0.958

It may also write miscellaneous diagnostic information to the Terminal window. If you wish to
make it stop doing so, search for print statements near the text # DIAG (my convention for
reminding myself where I have placed diagnostics in the code) and either delete them or
comment them out by preceding them with a pound sign (#). Your changes to the python code
will take effect as soon as you save the changed file.

Hummel’s Python LISA Page 24

Output (.run and .bat) Files:

Output files can be comparatively large (several pages). The blue Courier text below is from
lovetri/lovetri7.run: The output file from one run of lovetri7.sym. The black
Times New Roman text explains the blue text.

Note: Whole thing: Inference schema induction, LISA-guided
initiation of SSL

The text above is the result of a Note: command in the sym file.

The next thing LISA writes to the output file is the set of run parameters used on the run (below).

*
Parameters values:
 Neurally-plausible WM
 Semantic Noise = 0.0000
 Semantic Death = 0.0000
 Attention = 1.0000
 Within-group support = 1.0000
 Driver Inhibition = 1.0000
 Recip Inhibition = 1.0000
 Hebb Learning Rate = 1.0000
 Bail Upon Settling = False
 Using Vers142 Mapping Algorithm
*

Next is the sequence of operations on the run. This sequence is the result of the Sequence
specified in the sym file. (I’m sorry for the small font below. Each line is too long to show in
12-point font.) Each line shows: the sequence index, the driver analog, the recipient analog(s),
the value of Fire control, and the contents of the phase set:

Sequence:
Seq. 0 Driver:Abe&Beth Recip : Amy&Bill Fire control:props Phase set: P1 P2
Seq. 1 Driver:Abe&Beth Recip : Amy&Bill Fire control:props Phase set: P1
Seq. 2 Driver:Abe&Beth Recip : Amy&Bill Fire control:props Phase set: P2
Seq. 3 Driver:Abe&Beth Recip : Amy&Bill Fire control:props Phase set: P1
Seq. 4 Driver:Abe&Beth Recip : Amy&Bill Fire control:props Phase set: P2
Seq. 5 Driver:Amy&Bill Recip : Abe&Beth Schema Fire control:props Phase set: P1
Seq. 6 Driver:Amy&Bill Recip : Abe&Beth Schema Fire control:props Phase set: P2
Seq. 7 Driver:Amy&Bill Recip : Abe&Beth Schema Fire control:props Phase set: P3

Hummel’s Python LISA Page 25

Next it saves the mapping connections. A subset of those generated on this run are shown
below. They are organized in terms of “From <analog x> to <analog y>”, for all x and all y (but
recall that LISA will not learn connections to/from any x except to/from the driver). Within
analog pairs, the mapping connections are organized according to type of unit. Only connections
with weights greater than zero are saved to file.

* * * * * * * * * * * * * * * *
* * * Mapping Connections * * *
* * * * * * * * * * * * * * * *

From Amy&Bill to Abe&Beth:
 Groups:
 From G1 (L0) to: G1 (L0) = 0.960
 From G2 (L0) to: "G2 (L0)" = 0.970
 From G3 (L1) to: "G3 (L1)" = 0.879
 Props:
 From P1 to: P1 = 0.992

E.g., The line above says “the connection from P1in Amy&Bill to P1 in Abe&Beth has a weight
of 0.992”

 From P2 to: P2 = 0.992
 From P3 to: "P3" = 0.992
 Preds:
 From LOVES1 to: LOVES1 = 0.970
 From LOVES2 to: LOVES2 = 0.970
 From JEALOUS1 to: "JEALOUS1" = 0.969
 From JEALOUS2 to: "JEALOUS2" = 0.969
 Objs:
 From AMY to: ABE = 0.970
 From BILL to: BETH = 0.970
 From CAT to: CHAD = 0.970

From Amy&Bill to Schema:
 Groups:
 From G1 (L0) to: "G1 (L0)" = 0.970
 From G2 (L0) to: "G2 (L0)" = 0.970
 From G3 (L1) to: "G3 (L1)" = 0.879
 Props:
 From P1 to: "P1" = 0.992
 From P2 to: "P2" = 0.992
 From P3 to: "P3" = 0.992
 Preds:
 From LOVES1 to: "LOVES1" = 0.970
 From LOVES2 to: "LOVES2" = 0.970
 From JEALOUS1 to: "JEALOUS1" = 0.969
 From JEALOUS2 to: "JEALOUS2" = 0.969
 Objs:

Hummel’s Python LISA Page 26

 From AMY to: "AMY" = 0.970
 From BILL to: "BILL" = 0.970
 From CAT to: "CAT" = 0.969

From Abe&Beth to Amy&Bill:
 Groups:
 From G1 (L0) to: G1 (L0) = 0.960
 From "G3 (L1)" to: G3 (L1) = 0.879
 From "G2 (L0)" to: G2 (L0) = 0.970
 Props:
 From P1 to: P1 = 0.992
 From P2 to: P2 = 0.992
 From "P3" to: P3 = 0.992
 Preds:
 From LOVES1 to: LOVES1 = 0.970
 From LOVES2 to: LOVES2 = 0.970
 From "JEALOUS1" to: JEALOUS1 = 0.969
 From "JEALOUS2" to: JEALOUS2 = 0.969
 Objs:
 From ABE to: AMY = 0.970
 From BETH to: BILL = 0.970
 From CHAD to: CAT = 0.970

Finally it shows any units inferred by any analogs. Inferred units take the name of the driver unit
that caused them to be inferred, but put that name inside quotes. Hence, an object such as “Bill”
does not really represent Bill, literally, but instead represents whatever structure was inferred by
the self-supervised learning algorithm in response to Bill in the driver.

* * * * * * * * * * * * * * * *
* * * * Inferred Units * * * *
* * * * * * * * * * * * * * * *

* * * * * Analog Abe&Beth * * * * *

Groups:
"G3 (L1)": "G2 (L0)" CAUSE (0.723) CAUSE-RELATION (0.717)
"G2 (L0)": "P3" EFFECT (0.723) CAUSE-RELATION (0.717)

Abe&Beth inferred two groups, shown above: “G3” is connected to group “G2” and the
semantic features “cause” and “cause-relation”; “G2” is connected to “P3” and the semantics
“effect” and “cause-relation”. These inferences are incorrect and demonstrate that groups did not
yet work correctly in the version of LISA that generated this output. (“G3” should be connected
to both “G2” and G1.) These routines do work correctly in version Beta 3, so you will not see
these errors when you run Beta 3.

Props:
"P3": ["JEALOUS1" + ABE] ["JEALOUS2" + CHAD]

Hummel’s Python LISA Page 27

Abe&Beth inferred one proposition: jealous (Abe, Chad). The format above shows the prop’s
SPs as brackets containing the predicate (role) and argument to which they are connected.

The semantic content of the inferred relation jealous (predicate units “JEALOUS1” and
“JEALOUS2”) is listed below. Semantic units are listed by name with the connection weight to
the predicate (or object) unit in parentheses. Semantic unit names are left-justified in proportion
to the strength of the connection weight.

Preds:
"JEALOUS1":
 EMOTION1(1.000)
 POSITIVE1(0.171)
 STRONG1(1.000)
 LOVES1(0.171)
 NEGATIVE1(0.962)
 JEALOUS1(0.962)

"JEALOUS2":
 EMOTION2(1.000)
 POSITIVE2(0.171)
 STRONG2(1.000)
 LOVES2(0.171)
 NEGATIVE2(0.962)
 JEALOUS2(0.962)

Objs:

The inferences made by the schema are shown below. Its entire structure is inferred: Three
groups, three propositions, two relations (four predicate units) and three objects. Note how the
inferred objects “AMY”, “BILL” and “CAT” are strongly connected to the semantic features
“HUMAN” and “ADULT” and only weakly connected to more specific semantics; that is, each
refers to a “generic person”. The inferred propositions below can thus be interpreted as stating:

P1 loves (person1, person2)
P2 loves (person2, person3)
P3 jealous (person1, person3)

The inferred groups can be interpreted as stating that P1 and P2 jointly cause P3. (This
interpretation is a bit generous in the case of the output shown below due to the errors noted
above. Version Beta 3 does not make these errors.)

* * * * * Analog Schema * * * * *

Groups:
"G3 (L1)": "G1 (L0)" "G2 (L0)" CAUSE (0.723) CAUSE-RELATION
(0.717)
"G1 (L0)": "P1" "P2" "P3" CAUSE (0.723) CAUSE-RELATION (0.717)
"G2 (L0)": "P3" EFFECT (0.723) CAUSE-RELATION (0.717)

Hummel’s Python LISA Page 28

Props:
"P1": ["LOVES1" + "AMY"] ["LOVES2" + "BILL"]
"P2": ["LOVES2" + "CAT"] ["LOVES1" + "BILL"]
"P3": ["JEALOUS1" + "AMY"] ["JEALOUS2" + "CAT"]

Preds:
"LOVES1":
 EMOTION1(1.000)
 POSITIVE1(1.000)
 STRONG1(1.000)
 LOVES1(1.000)

"LOVES2":
 EMOTION2(1.000)
 POSITIVE2(1.000)
 STRONG2(1.000)
 LOVES2(1.000)

"JEALOUS1":
 EMOTION1(1.000)
 POSITIVE1(0.171)
 STRONG1(1.000)
 LOVES1(0.171)
 NEGATIVE1(0.962)
 JEALOUS1(0.962)

"JEALOUS2":
 EMOTION2(1.000)
 POSITIVE2(0.171)
 STRONG2(1.000)
 LOVES2(0.171)
 NEGATIVE2(0.962)
 JEALOUS2(0.962)

Objs:
"AMY":
 HUMAN(1.000)
 ADULT(1.000)
 FEMALE(0.423)
 AMY(0.423)
 MALE(0.595)
 ABE(0.595)
"BILL":
 HUMAN(1.000)
 ADULT(1.000)
 FEMALE(0.595)
 MALE(0.423)

Hummel’s Python LISA Page 29

 BILL(0.423)
 BETH(0.595)
"CAT":
 HUMAN(1.000)
 ADULT(1.000)
 FEMALE(0.423)
 MALE(0.595)
 CAT(0.423)
 CHAD(0.595)

Parameters

The (M)odify parameters option in the Main Menu (LISA> prompt in the Terminal
window) allows you to modify several parameters that affect the model’s behavior. Here I detail
what each of these parameters does. After you enter M at the LISA> prompt, a submenu will ask
you whether you wish to modify (f)ile read/write, (r)un parameters or
(d)angerous parameters.

(F)ile Parameters:

The file read/write parameters tell LISA which data to save to the output file, and whether to run
diagnostics during file reading. The first four simply allow you to tell LISA which “Hebbs” (i.e.,
mapping connections) to save to the output file. The fifth, “Min Vertical Wt to save”,
specifies the threshold for saving an inferred semantic-to-predicate (or -object) weights to save to
file; below this threshold, inferred semantics are not saved to file. Finally, “File Read
Diagnostics” specifies whether LISA will run diagnostics (basically, telling you what Build
is doing) as it reads a sym file.

(Ordinary) (R)un Parameters:

These are parameters that you can modify to simulate aspects of cognitive development,
cognitive aging, brain damage and other fun stuff (see Viskontas, Morrison, Holyoak, Hummel,
& Knowlton, 2004; Morrison, Krawczyk, Holyoak, Hummel, Chow, Miller, & Knowlton, 2004;
Hummel & Holyoak, 1997). There are also parameters you can toggle to switch between
different modes of operation.

1) Neurally-plausible WM capacity vs. Unlimited WM capacity: LISA’s algorithm for

establishing systematic asynchrony of firing between separate SPs is based on inhibitory
connections between SPs: Because SPs inhibit one another, they fire out of synchrony.
This neurally-plausible basis for establishing asynchrony of firing has the very desirable
property (from a theoretical perspective, i.e., as a model of human cognition) that it is
intrinsically capacity-limited: Only a finite number of SPs can be active simultaneously
and successfully fire out of synchrony. This capacity limit is very successful as a model
of human WM capacity limits. When you choose the Neurally-plausible WM capacity
option, it is this algorithm for establishing asynchrony that you are choosing.

Hummel’s Python LISA Page 30

At the same time, however, it can be useful to relax these WM capacity limits, for example,
to see what the architecture is capable of in principle or to use LISA as an architecture for
pure AI. For this purpose the Unlimited WM capacity option is useful. This option
abandons the neurally-plausible algorithm for establishing asynchrony of firing in favor
of a decidedly implausible algorithm: Make a list of SPs and just fire them in order. The
resulting algorithm has no capacity limit, is not neurally or cognitively plausible, and has
the capacity to make LISA smarter than people are (or at least much better at making and
using analogies). My own simulations with this option suggest that the model has terrific
promise as a pure AI engine.

2) Semantic Noise: The value of this parameter, multiplied by a random number between 0 and

1, is added to the input to each semantic unit on each iteration. The default value of this
parameter is zero. However, with non-zero values, it can be used for symmetry breaking,
for testing the robustness of the model’s various algorithms to noise, or for simulating the
effects of distraction, fatigue or inattention.

3) Semantic Death Rate: The value of this parameter is the probability that any given

connection from a semantic unit to an object or predicate unit will be randomly set to
zero at the beginning of a run (i.e., simulating the “death” of the semantic connection).
The default value of this parameter is zero. This parameter can be used very effectively
to simulate the effects of temporal variant fronto-temporal degeneration (i.e., temporal
brain degeneration or damage; see Morrison et al., 2004).

4) Attention: This parameter determines the degree to which a proposition’s importance and

support from other propositions influence the likelihood of its being chosen to fire when
firing is either random (command Order=[R (n p)] under Sequence in the
sym file) or group-based (command Order=[Gi (n p)]). Its default value is
1.0. With values less than 1.0, it can be used to simulate the effects of normal aging on
analogical reasoning performance (see Viskontas et al., 2004). With values greater than
one? We haven’t yet tried it.

5) Driver Inhibition: This parameter modulates the ability of SPs in the driver to inhibit one

another and thus to establish asynchrony of firing. It only has an effect under Neurally-
plausible WM (parameter 1 above). Its default value is 1.0. With values less than 1, it
may be useful for simulating aspects of cognitive development (Hummel & Holyoak,
1997), brain damage, inattention, stress and other factors known to influence frontal lobe
function.

6) Recipient Inhibition: This parameter modulates the ability of units in recipient analogs to

inhibit one another and thus to establish clean mappings to driver units. Its default value
is 1.0. With values less than 1, it may be useful for simulating aspects of cognitive
development (Hummel & Holyoak, 1997), brain damage, inattention, stress and other
factors known to influence frontal lobe function.

7) Hebb Learning Rate: This parameter modulates the rate at which mapping connections

(“Hebb connections” in the code) learn weights in response to their buffers. Its default

Hummel’s Python LISA Page 31

value in the current code is 1.0. Historically (e.g., Hummel & Holyoak, 1997, 2003) its
default value has been 0.9.

8) Bail when recip settles: This parameter only works under Unlimited WM capacity

(parameter 1 above). When it is false, each SP in the driver runs for a fixed number of
iterations before moving on to the next SP (parameter (13) Phase duration, under
Dangerous parameters, below). When it is true, the driver moves on from the current SP
to the next SP 10 iterations after the units in the recipient have settled (i.e., their
activations have stopped changing). This parameter can be used to derive response-time
estimates from LISA and also to increase (slightly) the speed with which the model
operates by trimming iterations off the time it takes to run each SP. In future versions of
the model, it will hopefully be an option to set this parameter to True under both
Unlimited and Neurally-plausible WM capacity.

9) H&H 97/03 Mapping Algorithm vs. Hummel & Green (Vers142) Mapping Algorithm:

The LISA model published by Hummel and Holyoak (1997, 2003) uses a very simple
algorithm for converting mapping connection buffers into connection weights. Long
about 2003 or 2004, John Hummel and (then) grad student, Collin Green (now at NASA-
Ames in Northern CA), developed a much more sophisticated (albeit much more
complex) algorithm based on Hummel & Holyoak’s (1997, 2003) idea that mapping
connections are not implemented neurally as connections (i.e., synapses) per se, but
rather as neurons in frontal cortex with rapidly-modifiable response properties.
(Unfortunately, we have not yet published this new algorithm. But we’re working on it.
Slowly.) Choosing the H&H9703 value of this parameter causes the model to use the
old version of the mapping algorithm; choosing the H&GVers142 value of this parameter
(the default value) causes it to use the new algorithm.

10) SSL Threshold: This parameter (default value = 0.7) determines the proportion of a target

analog that must map to the source before LISA will license self-supervised learning.
This parameter can only affect the model’s behavior when the SSL_OK command is
issued in the Sequence section of the sym file.

11) Within-group support: By default, proposition in the same group in an analog support one

another (i.e., in order to influence on another’s probably of being chosen randomly to
fire; see Hummel & Holyoak, 1997, 2003). This parameter determines the strength of
that support. Its default value is 1.0.

50) Hummel & Holyoak 03 Parameter Suite: When chosen, this option sets the model’s

parameters to mimic as closely as possible the parameter values used in Hummel &
Holyoak’s (2003) version of the model.

51) Default Parameter Suite: When chosen, this option sets the model’s parameters to the

current default settings.

Hummel’s Python LISA Page 32

(D)angerous Parameters:

These are parameters that affect the most basic operation of the model and that can therefore get
you into trouble. You might have fun modifying these parameters (e.g., by observing how robust
the model is to their values), but doing so is more likely to do harm than good.

1) Prop-to-prop Inhibition: The connection strength with which propositions in a recipient

analog inhibit one another. The default value is -1.

2) SP-to-SP Inhibition: The connection strength with which SPs in an analog inhibit one

another. The default value is -1.

3) Out-prop: Prop-to-SP: The connection strength with which propositions in a recipient analog

inhibit SPs not connected to them. The default value is -1.

4) Out-prop: SP-to-pred: The connection strength with which SPs in a recipient analog inhibit

predicate units not connected to themselves. The default value is -1.

5) Out-prop: SP-to-obj: The connection strength with which SPs in a recipient analog inhibit

object units not connected to themselves. The default value is -1.

6) Pred-to-SP: The connection strength with which predicate units in a recipient analog excite

SP units to which they are connected. The default value is 1.

7) Obj-to-SP: The connection strength with which object units in a recipient analog excite SP

units to which they are connected. The default value is 1.

8) Semantic-to-pred: A global (pan-unit) weighting term on the input from semantic units to

predicate units in recipient analogs. The default value is 1.5.

9) Semantic-to-obj: A global (pan-unit) weighting term on the input from semantic units to

object units in recipient analogs. The default value is 0.5.

10) Retrieval Threshold: The activation a proposition or group unit in a recipient analog must

achieve in order to be retrieved from active memory into WM and thus to have the
opportunity to learn mapping connections to units in the driver. The default value is 0.4.
There are times, especially when the correct mappings are not well-supported by units’
semantic overlap (e.g., the boys&dogs simulations), when it is useful to lower this
threshold (e.g., to 0.3)

11) Hebb Bias: A global (pan-unit) weighting term on the effect of input arriving via mapping

connections on units in recipient analogs. The default value is 2.

12) Iterations per SP (normal WM only): This parameter, which only has an effect under

Neurally plausible WM capacity (parameter (1) under Ordinary Run Parameters, above)
is used to set the duration of a phase set (in iterations) based on the number of driver SPs

Hummel’s Python LISA Page 33

in tat phase set (Duration = Iterations_Per_SP * Number_of_SPs). The default value is
330. This value is chosen to allow each SP to fire three times for approximately 110
iterations each time.

13) Phase duration (unlimited WM only): This parameter, which only has an effect under

Unlimited WM capacity (parameter (1) under Ordinary Run Parameters, above) is used to
set the duration of each phase of a phase set (in iterations). The default value is 75. Each
Sp in the phase set fires three times for Phase_duration iterations each time.

Components of the Code (.py files)

Version 1.00 of the Python implementation of LISA consists of 9 separate files, listed
alphabetically:

build.py contains the simulation parser: These routines read a sym file and use it to construct a

network and a simulation sequence.
dataTypes.py defines the key data types and sets the default values of all the runtime

parameters.
graphics.py contains the graphical routines.
hebbs.py constains the routines that update mapping connections (“Hebbs” in the code, for their

essentially Hebbian learning algorithm).
LISA.py is the main file that coordinates the activities of all the other files. It is lisa.py that one

invokes in the Terminal window in order to run the model (% python lisa.py).
outFile.py contains the routines for saving simulations results to output (.run and .bat) files.
parameters.py contains the routines that allow you to modify the runtime parameters from the

Terminal window. Note that it does not define the default values of these parameters;
these values are defined in dataTypes.py.

runLISA.py contains the routines that update the state of the network on an iteration-by-
iteration basis

ssLearn.py contains the routines that implement self-supervised learning.

Version Notes and Miscellany

Version 1.00 was last updated July 25, 2007. I think this version of the code is pretty bug-free.

(But note the weasel-words.)

The model is complete to the standards of Hummel & Holyoak (2003) (indeed, beyond it in

many respects). But since it does not yet implement analog retrieval, it lacks some
functionality of the 1997 version of the model.

If you encounter any bugs, or otherwise wish to contact me about the code and/or the model, I

would greatly appreciate your feedback. I can be reached at jehummel@uiuc.edu.

