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Abstract Across many areas of study in cognition, the ca-
pacity of working memory (WM) is widely agreed to be
roughly three to five items: three to five objects (i.e., bound
collections of object features) in the literature on visualWMor
three to five role bindings (i.e., objects in specific relational
roles) in the literature on memory and reasoning. Three ex-
periments investigated the capacity of observers’ WM for the
spatial relations among objects in a visual display, and the
results suggest that the “items” in WM are neither simply
objects nor simply role bindings. The results of Experiment
1 are most consistent with a model that treats an “item” in
visualWM as an object, along with the roles of all its relations
to one other object. Experiment 2 compared observers’ WM
for object size with their memory for relative size and provid-
ed evidence that observers compute and store objects’ rela-
tions per se (rather than just absolute size) inWM. Experiment
3 tested and confirmed several more nuanced predictions of
the model supported by Experiment 1. Together, these find-
ings suggest that objects are stored in visual WM in pairs
(along with all the relations between the objects in a pair) and
that, from the perspective of WM, a given object in one pair is
not the same “item” as that same object in a different pair.

Keywords Visual relations .Spatial relations .Visualworking
memory . Objects . Role bindings

Working memory (WM) is the cognitive resource responsible
for the active maintenance and manipulation of information.
The capacity of WM, which is sharply limited, determines
how much information one can maintain and manipulate—
that is, how much one can perceive or think about—in

parallel. As such, the capacity of WM is a key bottleneck in
perception (Simons & Ambinder, 2005; Simons & Chabris,
1999), attention (Treisman, 1998; Treisman & Gelade, 1980;
Wolfe, 1994), memory (Baddeley & Hitch, 1975; Cowan,
2001), reasoning (Halford, Baker, McCredden, & Bain,
2005; Hummel & Holyoak, 1997; Morrison, Holyoak, &
Truong, 2001), and virtually everything else we do.
Individual differences in the capacity of WM have also been
linked to various performance measures, such as fluid intelli-
gence (e.g., Conway, Cowan, Bunting, Therriault, &Minkoff,
2002; Gray, Chabris, & Braver, 2003; Heitz, Unsworth, &
Engle, 2005; Kane & Engle, 2002).

A large body of converging evidence from the literatures
on both visual cognition and “higher” cognition suggests that,
for most people and across a variety of tasks, the capacity of
WM is roughly three to five items. This is not to say that there
is necessarily only a single system for WM, but only that the
various systems have strikingly similar capacity limits
(Avons, Wright, & Pammer, 1994; Baddeley, Thomson, &
Buchanan, 1975; Cowan, Wood, Nugent, & Treisman, 1997;
Halford et al., 2005; Hitch, Burgess, Towse, & Culpin, 1996;
Levy, 1971; Longoni, Richardson, & Aiello, 1993; Luck &
Vogel, 1997; Murray, 1968; Peterson & Johnson, 1971; Song
& Jiang, 2006; Woodman & Vogel, 2008; for reviews, see
Baddeley, 2003; Cowan, 2001). More recent evidence sug-
gests that visualWMmay also be characterized in terms of the
amount and/or quality of information stored about the items in
WM, rather than strictly in terms of the number of those items
(e.g., Alvarez & Cavanagh, 2004; Alvarez & Oliva, 2009;
Oliva & Torralba, 2006). The work presented here does not
speak to the distinction between these discrete (i.e., item-
based) and continuous (i.e., information-/quality-based)
models of WM. Instead, we aim to elucidate the currency
and capacity of WM for the spatial relations among objects
in a display. This capacity has important implications for our
ability to interpret spatial layouts, to reason about objects
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arrayed in scenes, to interpret graphs, and to make basic
judgments about individual pairs of objects (e.g., whether
one can fit on top of or inside another) and even for our ability
to visually recognize individual, multipart objects (e.g.,
Biederman, 1987; Hummel, 2001; Hummel & Biederman,
1992).More important for our present purposes, understanding
the capacity of WM for the spatial relations among objects can
lend insight into the currency ofWMmore generally:What are
those “items” of which we can hold three to five in WM?

According to a great deal of literature on visual cognition,
the “items” that occupy slots in WM (e.g., Luck & Vogel,
1997) or otherwise consume the finite resources of WM (e.g.,
Alvarez & Cavanaugh, 2004) are discussed as objects—that
is, bound collections of object features. For example, using a
change detection paradigm, Luck and Vogel (1997),
Experiment 3 varied both the number of objects in the array
(two, four, or six) and the complexity of those objects (i.e.,
whether the objects were defined by a single feature or a
conjunction of two features). They found that subjects’
accuracy in detecting a change between two displays
decreased with the number of objects in the displays, but not
with the number of features defining each object. They
concluded that the capacity of WM is about four objects,
regardless of the number of features per object. (More
recently, Vogel, Woodman, & Luck, 2001, have revised their
estimate down to 2.8 items.) The basic idea is that once an
object occupies a slot in WM, additional features on that
object can all fit within the same slot with little or no
additional cost.

In the literature on memory and reasoning, the capacity of
WM is discussed most often in terms of role–filler bindings
(see Cowan, 2001; Halford et al., 2005; Hummel & Holyoak,
2003). A role–filler binding (or, equivalently, variable–value
binding) is a binding of one relational role (or variable) to its
argument (filler). For example, the proposition loves (John,
Mary) consists of two such bindings: John bound to lover and
Mary to beloved. (The proposition loves [Mary, John] specifies
the same roles and arguments, but the bindings are reversed.)
The expression 2 = 6/3 consists of three such bindings: 2 to
result, 6 to numerator, and 3 to denominator. The consensus
view in this literature is that the capacity ofWM is roughly 4 ±
1 such bindings (see Cowan, 2001; Morrison, 2005).

For example, Halford et al. (2005) had subjects view
graphical representations of two-, three-, and four-way inter-
actions, which entail two, three, and four variable–value bind-
ings, respectively. The subjects’ task was to indicate whether
“greater” or “smaller” would correctly complete the final
sentence of a verbal description of each graph. For example,
in the three-way problem shown in Fig. 1, the verbal descrip-
tion was the following: “People prefer fresh cakes to frozen
cakes. The difference depends on the flavor (chocolate vs.
carrot) and the type (iced vs. plain). The difference between
fresh and frozen increases from chocolate cakes to carrot

cakes. This increase is (greater/smaller) for iced cakes than for
plain cakes” (Halford et al., 2005, p. 71). Halford et al. (2005)
found that subjects’ error rates increased with the order of the
interaction. In Experiment 2, when the researchers increased the
number of variables to five, subjects performed at chance. In
broad agreement with Luck and Vogel (1997), these researchers
concluded that the capacity of WM is roughly four variable–
value bindings. Numerous other experiments have converged
on a similar estimate for the capacity ofWM (see Cowan, 2001,
for a review; but see Vogel et al., 2001).

Although there is comparatively broad agreement that the
capacity ofWM is roughly three to five items (but seeAlvarez&
Cavanagh, 2004; Alvarez & Oliva, 2009; Oliva & Torralba,
2006; Vogel et al., 2001), what remains less clear is precisely
what these “items” are. As was noted previously, the literature
on visual WM tends to discuss items as objects (i.e., bound
collections of object features), whereas the cognitive literature
tends to define the items as variable–value (role–filler) bindings.
That these two conceptions are not necessarily consistent be-
comes clear when one asks about the capacity of visual WM for
the spatial relations among objects in a display. It is known that
perceiving spatial relations requires visual attention (Logan,
1994) and, therefore, consumes WM resources.

Consider, for example, a four-object display and imagine
that an observer is tasked with remembering three spatial
relations among the objects in the display (e.g., for any given
pair of objects, which is larger than the other, which is above
the other, and which is right of the other; see Fig. 2).
According to the items-as-objects account, the WM load
imposed by this task is simply the number of objects in the
display. With a capacity of 4 ± 1 objects, it should be easy to
perceive all the relations among the four objects in Fig. 2. But

Fig. 1 An example of the stimuli from Halford, Baker, McCredden, and
Bain’s (2005) experiments on working memory for variables. Subjects
were presented with a graph as shown here with the following verbal
description: “People prefer fresh cakes to frozen cakes. The difference
depends on the flavor (chocolate vs. carrot) and the type (iced vs. plain).
The difference between fresh and frozen increases from chocolate cakes
to carrot cakes. This increase is (greater/smaller) for iced cakes than for
plain cakes.” Each subject’s task was to indicate whether “greater” or
“smaller” was the correct answer. (Here, the correct answer is “smaller”)
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if the items that occupy WM are role–filler bindings, as
suggested by the items-as-role-bindings account, then the load
imposed by three relations among each of four objects should
scale as r(n2 − n), where r is the number of relations in the
vocabulary (e.g., three in the present example) and n is the
number of objects to be related. Three relations among four
objects comes to 36 role bindings, vastly exceeding the 4 ± 1
capacity of WM. These accounts thus make very different
predictions about our ability to encode in WM the spatial
relations among objects in a display.

Both the items-as-objects and the items-as-role-bindings
accounts have important limitations as accounts of the repre-
sentation of the spatial relations among visual objects.
According to the simplest version of the items-as-objects
account, a relational role is just another feature on an object.
For example, this approach would represent the fact that
object 2 in Fig. 2 is larger than object 1 by including larger
among the features of 2 and smaller among those of 1 (see,
e.g., Hummel & Biederman, 1992; for a related proposal, see
Franconeri, Scimeca, Roth, Helseth, & Kahn, 2012). This
approach works well as long as there are only two objects in
the display, but it fails catastrophically with three or more
objects. For example, object 2 is larger than both 0 and 1 (and
would therefore have the feature larger bound to its represen-
tation) and smaller than object 3 (and would therefore also
have smaller bound to its representation). The resulting repre-
sentation would specify that 2 is both larger and smaller than
something, but it would fail to specify what, specifically, it is
larger or smaller than. (Hummel & Biederman, 1992, ob-
served that this property of their JIM model of object recog-
nition constituted a novel prediction—one that was soon
falsified by Logan & Compton, 1996.) This prediction of the
strict items-as-objects account of visual WM seems absurd on
its face, but it is at least logically possible that it is empirically
true of human visual WM (modulo; Logan & Compton,
1996); and, more important, it really is a prediction of the
account.

Role–filler based representations of the kind postulated by
the items-as-bindings account (including both traditional sym-
bolic representations [e.g., Anderson, Matessa, & Lebiere,
1997; Falkenhainer, Forbus, & Gentner, 1989] and
symbolic-connectionist representations [e.g., Doumas,
Hummel, & Sandhofer, 2008; Hummel & Holyoak, 1997,
2003]) do not suffer from this kind of ambiguity, because they
represent relations as full-blown propositions: The proposi-
tions larger (1, 0), larger (2, 1), and larger (3, 2) explicitly
specify which objects are larger than which. However, the
disadvantage of this kind of representation is that every role
binding requires its own slot in WM. For example,
representing that 2 is both larger than and above 1 requires
the propositions larger (2, 1) and above (2, 1): a total of four
role bindings—four slots in WM—to represent just two rela-
tions between two objects.

A hybrid account of the currency of WM for spatial
relations

An alternative way to represent that 2 is both above and larger
than 1 would be to “stack” pairs of relational roles onto pairs
of objects, in much the same way as the items-as-objects
approach “stacks” visual features into representations of com-
plete objects. For example, rather than explicitly coding the
separate propositions larger (2, 1) and above (2, 1), encode
instead the mixed relation above-and-larger (2, 1). The
resulting “stacked” representation would consume two, rather
than four, slots in WM but would leave the question of what
the object was larger than or what it was above unambiguous.
This kind of parallel encoding of multiple relations among a
single pair of objects is also broadly consistent with the
massively parallel processing of early and intermediate vision
(see Hummel & Biederman, 1992): As long as one is calcu-
lating and encoding the fact that 2 is larger than 1, one may as
well bring the fact that 2 is also above 1 along for the ride.

According to this hybrid account, the load imposed by
representing r relations among n objects would be simply
(n2 − n). Under this approach, each object is encoded in
relation to one other object—eliminating the ambiguity of
the items-as-objects approach—but with all the roles describ-
ing all the relations between two objects “stacked” into the
two WM “slots” occupied by those objects. Thus, WM ca-
pacity for the relations among objects would be limited by the
number of pairs of objects to be stored, regardless of the
number of relations between those pairs.

Experiment 1 was designed to test which of these three
accounts best characterizes the capacity of humanWM for the
spatial relations among objects. On each trial, the observer
viewed a display of two, three, or four random polygons
differing in color, size, and location in the display (see
Fig. 3), followed by a pattern mask. After the mask, a query

Fig. 2 A display of four objects (0–3). Encoding three relations (e.g.,
larger, above, and left/right) between each pair of objects would entail
encoding 36 role bindings: larger (2, 1), below (1, 2) . . . larger (2, 0) . . .
left of (3, 2) . . . and so forth.
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appeared consisting of two objects from the display, side-by-side
and of the same size, with a relation word (“larger,” “above,” or
“right-of”) between them. The observer’s task was to indicate
which of the two objects had been larger than the other, above
the other, or to the right of the other in the previous display. On
any given trial, some subjects were always asked about the same
relation, others were asked about either of two relations, and still
others were asked about any of three relations.

Each of the accounts reviewed above makes a unique set of
predictions about how performance on this task should vary as
a function of the number of relations to be remembered (varied
between subjects) and of the number of objects in the original
display (varied within subjects). The probability, p(c), of
responding correctly to any given query is p(r), the probability
that the queried relation will be remembered (i.e., in WM),
plus the probability of guessing correctly (.5 in the case of our
two-alternative forced choice task) times the probability that
the item will not have been remembered:

p cð Þ ¼ p rð Þ þ 0:5 � 1−p rð Þ½ �: ð1Þ

The probability, p(r), of remembering any given relation
from the original display is the probability that the queried
relation will get into a WM “slot”, p(s), times p(r|s), the
probability that it will remain in that slot until queried:

p rð Þ ¼ p sð Þp r
���s

� �
: ð2Þ

The probability of getting into a slot, p(s), is simply the
number of WM slots, k, divided by the load, l (i.e., the number
of items vying to occupy those slots), truncated above 1:

p sð Þ ¼ k

l

�1
: ð3Þ

These equations describe the predictions of all threemodels
of WM capacity described above. The models differ only in
how they predict that load, l in Eq. 3, will scale with the
number of relations to be remembered and the number of
objects entering those relations. Recall that the items-as-

objects model predicts that load, l, is simply n, the number
of objects; the items-as-bindings model predicts that load is
equal to the number of role bindings: l = r(n2 − n); and the
hybrid model predicts that it is simply the number of unique
object pairs, where ordering within the pair matters [i.e., r(a, b)
≠ r(b, a)]: l= n2 − n. Figure 4 summarizes the predicted loads, l,
and probabilities p(c) of responding correctly for each model
at each of three values of r and n.

Experiment 1

Experiment 1 was designed as a preliminary test of these
predictions. Observers performed a task identical to that illus-
trated in Fig. 3.

Method

Subjects

Sixty-three University of Illinois undergraduate students
earned course credit for participating in the experiment.
Each was randomly assigned to one of three conditions: one,
two, or three relations to remember on every trial. In the one-
and two-relation conditions, assignment of which relations
were to be remembered was counterbalanced.

Stimuli

Subjects viewed displays on a 24-inch Apple iMac with 1920
x 1200 resolution. Displays consisted of two, three, or four
irregular polygons, which were organized to be categorically
distinguishable from one another in terms of the spatial rela-
tions among them. Each polygon could be described as below
or above, left or right of, and larger or smaller than any other
polygon on the screen. Polygons were semirandomly colored
(subject to the constraint that no two polygons be similarly
colored) in order to facilitate subjects’ memory for them.

Fig. 3 An example of a trial from Experiment 1. A fixation cross was
presented for 500 ms, followed by a two-, three-, or four-object display
for 2,000 ms. A pattern mask appeared for 500 ms, followed by a query,

which remained on the screen until the subject responded with a keypress.
The response was followed by accuracy feedback
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The query images displayed a pair of objects chosen
semirandomly from the original display (i.e., subject to the
constraint that equal numbers of objects were chosen that
either had or had not been touching in the prior display).
The objects appeared on the screen side-by-side and normal-
ized to be the same size but otherwise maintained their orig-
inal shape, color, and orientation. The word “larger,” “above,”
or “right-of” was displayed between the objects in blue and
served (in the two- and three-relation conditions) to tell the
subject which relation to report.

Design and procedure

Each trial was structured as follows: After the 500-ms presen-
tation of a fixation cross, a two-, three-, or four-object display
appeared on the screen for 2,000 ms, followed by a pattern
mask of randomly generated and randomly colored polygons.
Subjects were then shown the query display consisting of two
objects and a relation word. The subjects' task was to indicate,
with a keypress, which object had stood in that relation to the
other in the original display. The number of objects in the

original display (two, three, or four) varied within subjects,
but the number of relations to be queried (one, two, or three)
varied between subjects.

In the one-relation condition, each subject was informed of
the relation to which he or she was to pay attention and was
asked about that same relation on every trial of the experiment.
Assignment of relations to subjects was counterbalanced.
Subjects in the two-relation condition could be queried about
either of two relations on any given trial (counterbalanced).
Subjects in the three-relation condition could be queried about
any of the three relations on any given trial. In the two- and
three-relation conditions, each of the possible relations was
queried equally often in a random order.

For each subject, a session consisted of 15 practice and 70
actual trials. Trials were presented in a random order.

Results

Figure 5 shows the mean proportion of correct responses in all
nine conditions.

Fig. 4 Load and accuracy predictions of the items-as-objects, items-as-
bindings, and hybrid accounts. The items-as-objects account predicts that
performance will vary with the number of objects but not the number of
relations, at least for a working memory capacity, k, of <4. The items-as-

bindings account predicts that accuracy will vary with the number of pairs
of objects times the number of relations. The hybrid account predicts that
accuracy will vary with the number of pairs of objects, regardless of the
number of relations
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The results reveal a main effect of the number of objects,
F(2) = 22.81, p < .0001, but no effect of number of relations
that could be queried, F(2) = 2.07, p= .129, and no interaction,
F(4) = 0.31, p = .871. There was no effect of type of relation
queried in either the two-relation, F(2) = 1.51 p = .230, or the
three-relation F(2) = 0.62, p = .541, condition.

We fitted these accuracy data against the predictions of all
three models with values of k (WM capacity) from 2.0 to 7.1 in
increments of 0.1. The best-fitting items-as-objects model had
a k of 2.7 (consistent with the estimate of Vogel et al., 2001)
and accounted for 89.9 % of the variance in subjects’ accura-
cy. With k = 3.0, this model accounts for 83.0 % of the
variance, and with k = 4.0 and k = 5.0, it accounts for 0 % of
the variance. (With k ≥ 4.0, this model’s performance is at
ceiling in all conditions.) The best-fitting items-as-bindings
model had a kof 5.2 and accounted for 71.2 % of the variance.
With k = 3.0, 4.0, and 5.0, this model accounts for 69.0 %,
67.5 %, and 71.0 % of the variance, respectively. Finally, the
best-fitting hybrid model had k= 5.0 and accounted for 90.0%

of the variance. With k= 3.0, 4.0, and 5.0, this model accounts
for 74.2 %, 84.8 %, and 90.0 % of the variance, respectively.

In terms of the proportion of subjects’ error variance
accounted for, all three models provide good fits to the results
of Experiment 1. However, for sufficiently large values of k,
all three models fail to account for any of the variance by
predicting ceiling effects in all conditions. For the items-as-
bindings model, this value is k = 36 (i.e., a person who could
simultaneously hold 36 role bindings in WM would perform
equally well in all conditions). For the hybrid model, this
value is k = 12. That is, both models predict nonzero effects
of our experimental manipulations within the normally ac-
cepted range of three to five items for WM capacity. By
contrast, the items-as-objects model predicts no effects of
our manipulations for any value of k equal to or above 4.0.

We also calculated root mean squared difference (RMSD)
between the various model predictions and the observed ac-
curacy data. With one degree of freedom (fixingWM capacity
at 4, allowing only p(r|s) to vary between 0.00 and 1.00 in
increments of .05), the best-fitting hybrid model gives an
RMSD of 0.045 (at p(r|s) = .75), and the best-fitting items-
as-bindings model gives an RMSD of 0.102 (at p(r|s) = .85).
(Recall that smaller values of RMSD indicate better fits.)
Since the items-as-objects model accounted for none of the
variance in the data with k= 4, we did not compute RMSD for
that model.

With two degrees of freedom (again allowing p(r|s) to vary
between 0.00 and 1.00 in increments of .05 and allowingWM
capacity to vary from 2.0 to 7.1 in increments of 0.1), the best-
fitting items-as-objects model gives an RMSD of 0.043 at k =
2.3 and p(r|s) = .65. The best-fitting items-as-bindings model
gives an RMSD of 0.072 at k = 7.1 and p(r|s) = .70. And the
best-fitting hybrid model gives an RMSD of 0.030 at k = 5.3
and at p(r|s) = .65. As is visible in Fig. 6, the range of

Fig. 5 Mean proportion of correct responses by condition in Experiment
1. Error bars depict the standard error of the mean

Fig. 6 Root mean squared difference (RMSD) plots for the items-as-
objects, items-as-bindings, and hybrid model fits to the data from
Experiment 1, varying k (working memory capacity) and p(r|s).
Darker colors in these plots indicate better fits. White indicates

RMSD ≥ 0.13, and successively darker shades of gray indicate
steps of 0.01, down to RMSD < 0.02, which is plotted as black.
The best fit (lowest value of RMSD) in each plot is highlighted
in a red box
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parameter values over which the hybrid model gives small
values of RMSD is wider than the corresponding range for
either the items-as-objects or the items-as-bindings model.

It is interesting to note that the best-fitting hybrid model (in
the two degrees of freedom (DF) case) has a WM capacity
closer to the three-to-five range than does the best-fitting items-
as-bindings model, although even the best-fitting hybrid model
appears to have aWM capacity that is roughly a point too high
relative to the limit of three to five. As was elaborated in the
context of Experiment 3, this inflated value may reflect sub-
jects’ systematically answering correctly on a subset of the
trials on which they had not encoded the queried pair into
WM. Moreover, the best-fitting items-as-bindings model lies
at the extreme of the range ofWM capacities tested, suggesting
that the fit could likely be improved further by assuming an
even more unrealistic WM capacity. For the hybrid and items-
as-objects models, by contrast, RMSD was nonmonotonic in
the range of WM capacities tested, meaning that further in-
creases in WM capacity would not improve the models’ fits.

Experiment 1 conclusions

According to both proportion of variance accounted for and
RMSD, the hybrid model provides the best account of the data
from Experiment 1: Accuracy decreased with the square of the
number of objects, but not with the number of relations
between them. This finding suggests that relational roles can
be “stacked” such that encoding a pair of objects in WM
entails encoding all the relations between that pair at no
additional cost (much as additional features of one object
can be encoded at no additional cost). This result suggests
that the visual system may encode only two pairs of objects in
WM at a time but that it computes all the relations between the
objects in each pair in parallel. More specifically, in a WM
task for visual relations, an item in WM appears to be one
member of a pair with a stack of relational roles relating it to
the other member of the same pair.

One potential objection to Experiment 1 is that we do not
know that subjects were actually computing the spatial rela-
tions between the objects and storing them in WM during
encoding (but see Franconeri et al., 2012; Jung & Hummel,
2009; Roth & Franconeri, 2012; Saiki & Hummel, 1996,
1998; Tomlinson & Love, 2006). Perhaps, instead, subjects
were simplymemorizing the metric details of the display (e.g.,
in an image-like format) and computing the relevant relations
only at the time of query. In this case, our task would not be a
test of WM for relations among objects, but only a test of WM
for objects. This interpretation of the findings of Experiment 1
is challenged by the fact that this “compute the relations after
the fact” account predicts the same performance as the items-
as-objects model. This “after the fact” interpretation is also
challenged by the results of Experiments 2 and 3. Experiment
3 was designed to test very specific predictions of the hybrid

model about accuracy as a function of the relation between the
pairs a subject encodes and those on which he or she is
queried. The items-as-objects model accounts for none of
the variance in subjects’ accuracy in this experiment, even if
the capacity of WM is assumed to be less than four.
Experiment 2 was deigned to explicitly compare subjects’
memory for relative size with their memory for absolute size
and provides evidence that observers do, indeed, encode rel-
ative size in WM.

Experiment 2

In order to directly test the hypothesis that observers perform
the task in Experiment 1 by remembering the objects’ absolute
sizes and locations and compute their relative sizes and loca-
tions only at the time of query, Experiment 2 was designed to
compare subjects’ memory for absolute size with their mem-
ory for relative size. (In this experiment, as in Experiment 3,
we used relative size as a proxy for all the relations investi-
gated in Experiment 1. Recall that Experiment 1 showed no
reliable effects of the number of relations to be remembered
on a trial.)

On each trial of Experiment 2, the observer saw either a
single random polygon or two copies of a polygon, side-by-
side, differing slightly in size (Fig. 7). After a brief exposure,
this display was replaced by a pattern mask, an interstimulus
interval (ISI; a blank screen), and a test depicting either the
same polygon (if the previous display had shown a single
polygon) or the same pair (if the previous display had shown
two). If the displays had shown single polygons, the ob-
server’s task was to say whether the second polygon was
smaller or larger than the first (i.e., an absolute size compar-
ison task). If the displays had shown pairs of polygons, the
task was to say whether the size difference between the poly-
gons in the second pair was smaller or larger than the size
difference between the polygons in the first (i.e., a relative size
comparison task). As will be detailed shortly, size differences
on the absolute size comparison task (i.e., one polygon with
one polygon) were numerically equated with size-difference
differences on the relative size comparison task (i.e., two
polygons with two polygons).

To the extent that observers encode only absolute size in
memory and compute relative size only at the time of test,
performance on the absolute size judgment should exceed
performance on the relative size judgment at all exposure
durations and ISIs. In this case, the relative size judgment task
would require the subject to encode and compare four sizes
(and compare the results of two size comparisons), whereas
the absolute size task only requires them to encode and com-
pare two. But to the extent that observers can encode relative
size explicitly, performance on the absolute and relative size
judgment tasks might diverge in other ways.
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One possible divergence concerns the effect of exposure
duration. To the extent that relative size takes longer to com-
pute and encode than absolute size (e.g., because it is based on
estimates of absolute size), judgments of absolute size might
be more accurate than judgments of relative size at short
exposure durations. (Or, more generally, any advantage for
absolute size over relative size might be greater at shorter,
rather than longer, exposure durations, or any advantage for
relative size over absolute size might be smaller at shorter than
at longer exposure durations.)

A second possible divergence concerns the effect of delay
between study and test. Relative size is a better measure of the
distal stimulus than is absolute retinal size (e.g., the latter, but not
the former, changes with distance from the viewer), so people
may be biased to encode the relative sizes of objects in
memory, rather than their absolute sizes. To the extent that
this bias holds, judgments of relative size may be more robust
to longer delays than are judgments of absolute size.

A third possible divergence is simply in overall accuracy.
To the extent that numerical differences in absolute and rela-
tive size can be equated (as we have done in Experiment 2b),
differences in observers’ ability to detect one versus the other
must reflect differences in how they encode the two properties
in memory and compare them at test.

Method

Subjects

Sixteen University of Illinois undergraduate students earned
course credit for participating in this experiment. All compar-
isons were within subjects.

Stimuli

Subjects viewed displays on a 24-inch Apple iMacwith 1920 x
1200 resolution. The experiment was created and run in

Python and Pygame. The study and test stimuli on all trials
consisted of blue randomly generated polygons. We equated
the absolute and relative size trials by using a fixed set of ratios
([1.04, 1.0816, 1.1.248, 1.1698]) to relate study items to test
items on both kinds of trials.

We generated each absolute size stimulus by creating a
randomly generated irregular convex base polygon, b1, whose
size (i.e., area on the computer screen) was randomly chosen
from a square distribution in the range 8,000–15,000 pixels.
We next made a referencepolygon, r1, by multiplying the area
of b1 by a scaling factor, s1:

r1 ¼ s1b1; ð4Þ

s1 ∈ (1.04, 1.0816, 1.1.248, 1.1698). Other than the differ-
ence in size, b1 and r1 were identical. Half the trials presented
b1 first, and the other presented r1 first; the observer’s task was
to decide whether the first or the second polygon had been
larger.

We generated the relative size trials as follows. First, we
created a pair, p1, of polygons, b1 and r1, as described previ-
ously. We next created a second pair of polygons, p2, identical
to the polygons in p1 in shape but not size. Specifically, b2 (the
“first” member of p2), like b1, took a random size in the range
8,000–15,000 pixels. Polygon r2 (the “second”member of p2)
took as its size the same scaling factor, s1, that related r1 to b1
times an additional scaling factor, s2, in the same range:

r2 ¼ s2s1b2; ð5Þ

s2 ∈ (1.04, 1.0816, 1.1.248, 1.1698). As a result, exactly the
same set of ratios relating b1 to r1 on absolute size trials related
pairs polygons, p1 and p2, on relative size trials (i.e., s1 and s2
were chosen from the same set of values). However, none of
the absolute sizes, b1, b2, r1, or r2, were the same on any given
trial, making it impossible to perform the relative size judg-
ment on the basis of the absolute sizes of b1 and b2 (i.e., even
though the size difference in p2 was always larger than the size

Fig. 7 aOn absolute size trials, subjects must indicate whether the first (study) or second (test) polygonwas larger. bOn relative size trials, subjects must
indicate whether the first or the second size differencewas larger
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difference in p1, b1 was just as likely to be larger as smaller
than b2). However, by virtue of the way p1 and p2 were
constructed, there was a small statistical tendency for r2 to
be the largest object on any given trial. (Specifically, r2 will be
the largest object on any trial on which b1 is less than 1.082
larger than b2, which is slightly more than half the trials.
Experiment 2b was designed to explicitly control the appear-
ance of the largest/smallest polygons in the p1/p2 pairs.) On
half the trials, p1 was presented first, and on the other half, p2
was presented first. The subject’s task was to determine
whether the size difference relating the first pair was larger
or smaller than the size difference relating the second pair.

Design and procedure

The experiment consisted of 8 practice trials, followed by 200
trials on which accuracy data were collected. During the
experiment, absolute and relative trials were randomly
intermixed.

Absolute size trials consisted of one irregular polygon (b1
or r1) displayed on the screen for 34, 68, 136, 273, or 544 ms.
This display was followed by a pattern mask (ISI), which
stayed on the screen for 200, 500, 1,000, or 4,000 ms, follow-
ed by the test display, which remained on the screen until the
subject responded. The subjects’ task was to indicate whether

the first or the second polygon had been larger, using a
keypress (see Fig. 7a).

Relative size trials consisted of one pair of polygons
(p1 or p2) displayed on the screen for 34, 68, 136, 273, or
544 ms, followed by a pattern mask (ISI) for 200, 500, 1,000,
or 4,000 ms. The test display (p2 or p1) depicted the same two
pair of polygons, but with a slightly larger or smaller size
difference between the members of the pair. The subjects’ task
was to indicate whether the first or the second size difference
had been larger. The second display remained on the screen
until the subject responded with a keypress (see Fig. 7b).

In this experiment, exposure duration, ISI, and the ratios, s1
and s2, did not vary orthogonally. Instead, in one block, the
ratios varied while exposure duration and ISI were held con-
stant, both at 200 ms. In the other block, the ratios were held
constant at 1.1248 while exposure duration and ISI varied
within subjects. The order of blocks was counterbalanced.
Each block consisted of 200 trials.

Results

Unsurprisingly, as the ratios s1 and s2 increased, so did accu-
racy on both absolute size and relative size trials, F = 65.639,
p < .001. More to our present interest, Fig. 8 shows accuracy

Fig. 8 Subjects’ accuracy in Experiment 2a and in 2b as a function of exposure duration and ISI. Experiment 2b is a replication of Experiment 2a with
more careful control
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as a function of exposure duration (averaged over ISI, s1,
and s2) and ISI (averaged over exposure duration, s1 and s2).

As the ISI between initial display and test increased, accu-
racy decreased on absolute size trials but remained relatively
stable on relative size trials across all the delays tested. In the
relative size condition, there was no reliable difference be-
tween performance with the shortest (200 ms) and longest
(4,000 ms) ISIs, t(16) = 0.86, p = .40, but there was a reliable
difference in performance between the shortest and the longest
ISIs in the absolute size condition, t(16) = 2.68, p = .01. As is
evident in Fig. 8, exposure duration had no reliable effect on
performance in the relative size condition, t(16) = 1.71 p= .11,
but longer exposure durations did facilitate performance, rel-
ative to shorter exposure durations, in the absolute size con-
dition, t(16) = 5.89 p < .001.

Experiment 2b

Experiment 2b was a direct replication of the block of
Experiment 2a that varied exposure duration and ISI, except
that the stimuli were designed to more precisely control the
largest and smallest values of both the smaller (b1 and b2) and
larger (r1 and r2) members of p1 and p2 in the relative size
condition. Specifically, the absolute sizes of the individual poly-
gons on relative size trials were staggered as illustrated in Fig. 9,
ensuring that b2 was the smallest polygon on 60 % of the trials,
with b1 the smallest on the other 40 %, and r2 was the largest
polygon on 60 % of the trials, with r1 the largest on the other
40 %. As such, responding only to the largest or the smallest
polygon in any pair of pairs would ensure 60 % correct

performance, and responding to both the largest and smallest
would ensure correct performance on 20 % of the trials (see
Fig. 9).

This staggering was accomplished by first setting the size
of b1 to a value between 8,000 and 15,000 pixels and r1 to a
size value based on b1 and s1, as described above (Eq. 4). (In
this experiment, s1 was randomized to a value in the set [1.04,
1.0816, 1.1.248, 1.1698] on each trial, and s2 varied within
subjects as in Experiment 2a.) To construct a [b1, r1, b2, r2] trial
(Fig. 9, row 1), we set b2 to the size of r1 plus a random
number of pixels between 0 and 1,000 and then set r2 to b2
times the larger relation size, s1s2 (Eq. 5). To construct a [b1, b2,
r1, r2] trial (Fig. 9, row 2), we set b2 to a value halfway between
b1 and r1 and then set r2 = b2s1s2 (Eq. 5). To construct a [b2, b1,
r1, r2] trial (Fig. 9, row 3), we set r1 to b1s1, b2, and r2 to r1. We
then iteratively made b2 smaller and r2 larger until the ratio (r2/
b2)/( r1/ b1) = s2. To construct a [b2, r2, b1, r1] trial (i.e., Fig. 9,
row 4), we set r2 to b1 minus a random number of pixels
between 0 and 1,000 and then set b2 so that relation r2/b2 was
equal to s2 times the relation r1/b1. That is, b2 = (s2r1)/(r2r1) so that
r2 = b2s1s2 (Eq. 5). To construct a [b2, b1, r2, r1] trial (i.e., Fig. 9,
row 5), we set the size of r2 to a value halfway between b1 and r1
and then set b2 = (s2r1)/(r2r1) so that r2 = b2s1s2 (Eq. 5) Fig. 10.

In all other respects, Experiment 2b was identical to the
block of Experiment 2a that varied ISI and exposure duration,
except that (1) as was noted previously, we randomized s1 on a
trial-by-trial basis and (2) the shortest exposure duration we
tested was 17 ms (i.e., one screen refresh) rather than 34 ms.

Results

Just as in Experiment 2a, accuracy decreased with increasing ISI
for absolute size trials but remained relatively stable for relative
size trials. In the relative size condition, there was no reliable
difference between performance in the shortest (200 ms) and
longest (4,000 ms) ISIs, t(20) = 1.39, p = .17, but there was a
reliable difference in performance between the shortest and the
longest ISIs in the absolute size condition, t(20) = 3.09, p= .005.

Also, although the shapes of the lines appear different for
Experiments 2a and 2b for exposure duration, the reliable
pattern remains the same between the two experiments. That
is, exposure duration had no reliable effect on performance in
the relative size condition, t(20) = 1.59 p = .12, but longer
exposure durations did facilitate performance relative to
shorter exposure durations in the absolute size condition,
t(20) = 3.22 p = .004.

Experiment 2 Conclusion

Experiment 2 demonstrated qualitative differences between
observers’ memory for absolute and relative size. Most strik-
ingly, subjects’ memory for relative size was overall more
accurate than their memory for absolute size (i.e., around

Fig. 9 Illustration of the size staggering used in Experiment 2b. Each
row represents the sizes of the polygons presented on one kind of relative
size trial, with larger polygons depicted to the right in the figure. The
absolute sizes of the smallest (b1 and b2) and largest (r1 and r2) members of
polygon pairs (p1 and p2) were controlled so that b1 was the smallest
polygon on 40 % of the trials (rows 1 and 2) and b2 the smallest on the
other 60 % (rows 3–5), and r1 was the largest polygon presented on 40 %
of the trials (rows 4 and 5) and r2 the largest on the other 60% (rows 1–3)
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75 % vs. 70 % accuracy on our tasks, respectively). Memory
for relative size also lasted longer than memory for absolute
size, although over the durations we tested, this effect was
modest. Interestingly, memory for relative size was superior to
memory for absolute size at all the exposure durations we
tested. This result suggests that relative size can be computed
and encoded very rapidly, at least under the presentation
conditions to which we exposed our observers.

Most important for our present purposes, these results
suggest that observers can and do compute and encode rela-
tive size as a property of two objects in its own right: It is not
the case that people encode absolute size and compute relative
size only later, as required by the task in which they are
engaged. Of course, this result does not imply in any strong
sense that the subjects in Experiment 1 were encoding our
displays in terms of the relations among the depicted objects,

Fig. 10 Schematic illustration of the six categories of encoding-query sets. Colored objects in the encoded pairs were presented first and last on the
encoding trial. See the text for details
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but only that they were at least capable of doing so and that, to
the extent that Experiment 1 required our subjects to make
“fine” (for some definition of “fine”) discriminations between
the objects in terms of size or location, it would have been in
their best interest to do so.

Experiment 3 and computational model

On the basis of mathematical instantiations of the items-as-
objects, items-as-bindings, and hybrid models of WM for
spatial relations, the results of Experiment 1 provided support
for the hybrid account. This model accounted for the largest
proportion of the variance in subjects’ accuracy on the object–
relation memory task and provided the closest fit to the
subjects’ data in terms of RMSD.

Experiment 3 was designed to replicate and extend the
results of Experiment 1. Whereas Experiment 1 was designed
to test the broad performance predictions of abstract mathe-
matical instantiations of each of the three models, Experiment
3 was designed to test more nuanced predictions of the hybrid
model itself. To the extent that the hybrid model provides an
accurate account of the manner in which we encode the spatial
relations among objects into visual WM, it ought to be able to
predict not only overall accuracy, but also specific patterns of
accuracy as a function of the relations between the objects and
relations the observer encodes into WM and those on which
he or she is subsequently queried.

In order to test these more nuanced predictions, we first
constructed a process version of the hybrid model—that is, a
version of the model that actually performs the observer’s
task—and observed the model’s accuracy as a function of
(1) which object pairs it had encoded into WM on a given
trial and (2) the pair on which it was queried on that trial. We
tested the model on all possible combinations of encodings
and queries.We next briefly summarize the process model and
its predictions, followed by Experiment 3, which was de-
signed to test those predictions. The model is described in
detail in the Appendix.

Computational model

The fundamental tenet of the hybrid model is that two pairs of
objects can be held in WM, along with all the relations between
the objects within each pair. Accordingly, the process version of
the model encodes pairs of objects in memory along with all the
relations (larger, above, and right-of) between the members of
each pair.We simulated each trial of Experiment 1 in two phases,
an encoding phase and a test phase. During encoding, the model
stores two pairs of objects inmemory in terms of their shapes and
the spatial relations within each pair. Queried with a pair of
objects during test, the model compares the queried objects with

the pairs it has stored in memory and attempts to activate spatial
relations on the basis of the match between the queried pair and
the stored pairs. The relations so activated serve as the model’s
“memory” for—more accurately, estimate of—the likely relation
between the objects in the query. On the basis of this estimate, the
model generates a response (e.g., “object 1 was larger than object
0”), which is compared with the correct relation in order to
determine the accuracy of the model’s response.

In the model’s memory, displays such as those used in
Experiment 1 are encoded at three hierarchical levels: (1) as
objects bound to specific relational roles (e.g., object 0 bound to
smaller, right-of, and above); (2) pairs of objects in specific
collection of relations to one another (e.g., smaller, right-of,
above [object 0, object 1]); and (3) collections of two such pairs.
During the test phase, the model’s response to a queried pair is
based on the match between the objects in that pair and the
relations and relational roles encoded in the model’s memory.

Simulations and predictions

All our simulations used four-object displays, since such
displays afford the richest set of potential pairs for encoding
and test that can be compared with the conditions of
Experiment 1. In a four-object display, there are six [6 = (42

− 4)/2] unique pairs of objects to use as queries and 15 [15 =
(62 − 6)/2] unique pairs of pairs to use for encoding, for a total
of 90 possible trial types (where a trial is defined by the pair of
pairs encoded and the pair queried; see Table 1). These pre-
dictions fall into six categories.

1. Encoded is when the queried pair is one of the ones the
model encoded. For example, if the model encodes pair
[0, 1] and pair [1, 2] and is then queried about [0, 1], it is
likely to report the correct relation between 0 and 1
because it had encoded it.

2. Right for the wrong reason is when the model can get the
correct answer without having encoded the queried pair.
For example, if the model encodes [0, 1] and [2, 3] and is
queried on [0, 3], it should answer correctly that 0 was
smaller than 3 because 0 is encoded (in the first level of
the hierarchy) as smaller than something and 3 is encoded
as larger than something.

3. One role binding (“1RB” in Table 1) is when the model
encodes only one of the role bindings on which it is
queried—for example, encoding [0, 1] and [0, 3] and then
being queried on [0, 2]. Even though the model doesn’t
know anything about object 2, it knows that 0 is smaller
than something, and so it may have an opportunity to
guess the correct answer.

4. Ambiguous occurs either (a) when both queried objects
are encoded in the same role or (b) when only one of the
encoded objects is queried and that object was encoded in
both roles. An example of (a) is when the model encodes
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[0, 2] and [1, 3] and is queried on [0, 1]; then it knows that
0 is smaller than something and 1 is smaller than some-
thing, leaving it unclear which of these two had been
smaller than the other. An example of (b) is when the
model encodes [0, 1] and [1, 2] and is queried on [1, 3]. In
this case, it knows nothing about 3, and the two bindings it
knows about 1 contradict one another.

5. Misleading is when one encoded role binding points in the
wrong direction. For example, if the model encodes [0, 3]
and [2, 3] and is queried on [1, 2], it has encoded 2 as
smaller than something even though 2 was, in fact, larger
than 1 (a relevant fact the model failed to encode).

6. Deeply misleading occurs when the model encodes [0, 1]
and [2, 3] and then is queried on [1, 2]. It has encoded that
1 was larger than something and that 2 was smaller, so it is
very unlikely to answer correctly that 1 had actually been
smaller than 2.

Figure 11a illustrates the proportion of the model’s correct
responses over 100 runs of all 90 possible encoding × query
pairings. In the cases of encoded and right for the wrong
reason, the model performs near ceiling. In the cases of one
role binding, ambiguous, and misleading, the model performs
near chance. And in the case of deeply misleading, the model
nearly always answers incorrectly.

Figure 11b depicts predicted accuracy in Experiment 3 if
subjects encode the objects’ absolute sizes at encoding and
compute their relative sizes only at the time of query. These
predictions are based on a WM capacity, k, of 4.0 and p(r|s) =
1.0, but the ordinal predictions remain exactly the same (i.e.,

with all values scaled toward 0.5) if k is assumed to be less
than 4.0 or p(r|s) is assumed to be less than 1.0.

Experiment 3

The simulation results in Fig. 11a constitute detailed predictions
about subjects’ performance with four-object displays as a
function of which pairs they happen to encode on a given trial
and the pair on which they are queried. Experiment 3 was
designed to test these predictions. Every trial of Experiment 3
presented subjects with a four-object display to encode and
queried them about which of two objects had been larger in
that display (recall that the effect of number of relations was not
reliable in Experiment 1, so we held that variable constant in
Experiment 3).

Although it is straightforward to experimentally manipu-
late the pair on which a subject is queried on any given trial, it
is more challenging to manipulate the pairs they happen to
encode. To this end, Experiment 3 manipulated the timing of
the presentation of the objects in the encoding displays
(Fig. 12). On each trial, two of the four to-be-encoded objects
were presented first for 100 ms, followed by the four-object
display as a whole (1,000 ms), followed by two of those
objects for 100 ms. Our intuition was that presenting pairs of
objects in isolation before and after the display as a whole
would bias subjects to encode the relations between the ob-
jects in those pairs. Accordingly, the objects presented first
and last on any given trial were chosen to correspond to the
rows of Table 1. To the extent that the process model provides

Table 1 For 15 possible pairs of parts and six possible queries, there are six categories of responses from the model, which are based on the relationship
between pairs of objects that were encoded and the pair queried

Atten Percept Psychophys



an accurate account of the manner in which people perform
our task, subjects’ performance as a function of the encoding
and query manipulations ought to conform to the model
predictions presented in Fig. 11a.

Method

Subjects

Forty-eight University of Illinois undergraduate students
earned class credit for participating in the experiment.

Stimuli

The stimuli were like those of Experiment 1, except that all
stimuli presented four objects.

Design and procedure

The procedure was similar to that of Experiment 1.
Subjects viewed objects on a 24-inch Apple iMac with
1920 x 1200 resolution. First a fixation cross was pre-
sented; then the display, pattern mask, and, finally, a
query were presented, followed by accuracy feedback.
In this experiment, however, we were interested in com-
paring the six categories of accuracy predictions from
the model with the performance of human subjects. For
this reason, only four-part objects were used, and only
one relation (larger/smaller) was queried.

In order to compare pairs encoded by the subjects on
a given trial with the query, the displays appeared on
the screen in a way designed to encourage subjects to
encode particular pairs of objects into WM (see
Fig. 12). Specifically, one pair of objects was presented
for 100 ms, then the whole display was presented for
1,000 ms, and then the second pair remained alone on
the screen for 100 ms. All of the 15 possible part
pairings (rows in Table 1) were presented equally often.

A session consisted of 15 practice and 90 actual trials.
Trials were constructed to match the conditions depicted in
Table 1.

Results

Figure 13 shows subjects’ accuracy in each of the six catego-
ries of conditions. The data closely match the hybrid model
predictions (r2 = .88). In contrast to the model, the subjects
showed a strong recency effect, in that they had a better
memory for the second pair of objects presented during
encoding than for the first pair, t(47) = 4.17 , p < .001.
Considering only the pairs subjects encoded second during
encoding, r2 increases to .93. By contrast, the items-as-objects
model (Fig. 11b) accounts for only .003 (0.3 %) of the vari-
ance in subjects’ accuracy.

The model predicted that memory for encoded and right for
the wrong reasonswould be better than memory for one role
binding, ambiguous, and misleading. The subjects’ data ex-
hibited the same pattern, t(47) = 2.44, p = .01. However,

Fig. 11 aResults of 100 runs of the process version of the hybrid model. bPredictions of the encode size only (i.e., items as objects) model in the same
six conditions

Fig. 12 Sequence of events on a trial in Experiment 3
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counter to the model’s prediction, performance in one role
binding, ambiguous, and misleading was not reliably better
than performance in deeply misleading, t(47) = 1.65 , p = .10.

The baseline value depicted in Fig. 11 corresponds to
accuracy in the four-object, one-relation condition from
Experiment 1. In Experiment 3, performance in the deeply
misleading condition was numerically worse than baseline
performance, although this difference was not statistically
reliable, t(20) = 1.29, p = .208.

Experiment 3 conclusions

When recency effects are excluded from the subjects’ data, the
process model accounts for 93 % of the variance in subjects’
accuracy in Experiment 3. As was predicted, accuracy is
higher in encoded and right for the wrong reasons than in
one role binding, ambiguous, misleading, and deeply
misleading. The only case in which performance fell numer-
ically below baseline was deeply misleading. Along with the
results of Experiment 1, these results are consistent with the
hybrid model’s prediction that we can hold two pairs of
objects in WM, along with all the relations between the
objects within each pair. These results also stand in stark
contrast to the predictions of the items-as-objects model or
any model that assumes that subjects hold absolute size in
WM and compute relative size only at the time of query.

One notable difference between the model’s performance
and that of the human subjects is that the model’s accuracy
varies between zero and one, whereas subjects’ accuracy is
bounded between chance (50%) and one. Although the reason
for this difference is not completely clear, one likely explana-
tion is that the model, unlike the human subject, cannot guess
when the evidence it gets from the feedback from memory is
weak: The model simply compares activation accumulated in
units representing larger and smaller and responds when a
threshold difference is reached. It is not sensitive to the
strength of the evidence that led to that difference. The human

observer, by contrast, may have some sense of the strength of
the evidence he or she brings to bear on his or her decision and
is more likely to guess when that evidence is weak. A more
important difference between the model and our human ob-
servers is that the model could encode only those pairs we told
it to on any given simulation. Our experimental manipulation,
by contrast, serves merely to bias subjects to encode some
object pairs over others. To the extent that this biasing effect is
imperfect, subjects can be expected to encode pairs other than
those we intended on any given trial.

Another interesting property of the simulation results and
the subjects’ data is that the model predicted slightly better
performance in the right-for-the-wrong-reason condition than
in the encoded condition, and a trend toward a similar pattern
is visible in the human data (although the difference is not
statistically reliable). In the model, this difference derives
from the fact that a right-for-the-wrong-reason response is
driven by a larger number of pairs of objects in memory than
is an encoded response. Specifically, right-for-the-wrong-
reason activates two objects in two separate pairs in memory
(one for each pair in which each object participated; recall that
right-for-the-wrong-reason trials present, at test, objects the
subject/model has encoded in relations consistent with the
right answer, just not in the same pair). By contrast, encoded
activates two objects in memory but only one pair. Due to the
nonlinearity of the activation function of the units composing
the model (see the Appendix), this two-and-two versus two-
and-one difference is sufficient to generate more evidence for
the right answer in the case of right-for-the-wrong-reason than
in the case of encoded. It is tempting to wonder whether a
similar effect was operating in the visual systems of the human
subjects.

The fact that the process model can respond correctly to
some queries it had not encoded into memory (e.g., in the case
of right for the wrong reason and one-role binding) has
important implications for our estimates of the capacity of
WM on tasks requiring memory for the spatial relations
among objects. Recall that the RMSD fits of the data from
Experiment 1 to the predictions of (the mathematical version
of) the hybrid model yielded an estimated WM capacity of
5.3, which is above the normally accepted range of 3–5. We
speculate that the model’s (and, by hypothesis, human’s)
ability to exceed the 4 ± 1 capacity limit reflects the role of
retrieval-based heuristics, such as those used by the model,
that make it possible to make intelligent guesses.

To this end, we used RMSD to fit the simulation results of
the process model against the mathematical version of the
hybrid model (in a manner precisely analogous to that in
which we fit the human data; i.e., for the purposes of this
analysis, we treated the process model as a human subject).
For this analysis, we assumed that the model would perform
perfectly in the two-object condition of Experiment 1. The
model’sWM capacity is set to exactly 4, and its p(r|s) = 1.0, so

Fig. 13 Accuracy as a function of category of response in Experiment 3.
Baseline performance is based on the four-object, one-relation condition
from Experiment 1
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there is no reason why it should make any errors in the two-
object case. In the three-object condition of Experiment 1, the
process model is expected to perform at a mean accuracy of
0.89: On seven of the nine possible encoding/query pairs, the
model will have encoded the queried pair [giving it a p(c) =
1.0], and on the remaining two, it will have encoded one role
binding [giving it a p(c) = .5], for a total of 8/9 = .89 overall
proportion correct in that condition. And for the four-object
condition of Experiment 1 (which is equivalent to Experiment
2), the model achieved an overall accuracy of 0.66. With these
numbers, the best RMSD fit of the process model simulations
to the mathematical version of the hybrid model yields RMSD
= 0.021at WM capacity 4.5 and p(r|s) = 1.0 (see Fig. 14). That
is, the model, like our human subjects, best fits aWM capacity
slightly greater than 4.0. And, crucially, it did so in spite of the
fact that we explicitly built it to have aWM capacity of exactly
4.0. We take this result as strong suggestive evidence that our
human subjects’ seemingly exaggerated WM capacity in
Experiment 1 may reflect retrieval/relation-matching strate-
gies similar to those used by the process model.

General discussion

The literature onWM, from the study of both visualWM (e.g.,
Luck&Vogel, 1997) andWM inmemory and reasoning (e.g.,
Baddeley & Hitch, 1975; Halford et al., 2005) suggests that,
for most people and across many tasks, people can hold and
manipulate about three to five “items” in WM at a time.
However, this apparent agreement about the capacity of WM
belies an implicit disagreement about the currency of WM: In
the vision literature, the “items” occupying WM are often
assumed to be objects (i.e., bound collections of object fea-
tures), whereas in the literature on memory and reasoning,
these “items” are assumed to be role–filler (or, equivalently,

variable–value) bindings. The importance of this implicit dis-
agreement becomes apparent when one poses the question,
What is the capacity of visual WM for the spatial relations
among objects in a visual display?

According to the traditional visual account, which holds
that WM load scales with the number of objects to be remem-
bered, people ought to have no difficulty remembering the
spatial relations among up to four (or at least 2.8; Vogel et al.,
2001) objects. But according to the traditional account from
memory and reasoning, which holds that load scales with the
number of role bindings to be encoded, remembering, say,
three relations among just four objects ought to impose a
catastrophically large load of 36 role bindings. According to
the hybrid account proposed here, WM load should scale with
the square of the number of to-be-encoded objects (as predict-
ed by the items-as-bindings account) but should be unaffected
by the number of relations to be encoded by the members of
each pair (as predicted by the items-as-objects account from
the vision literature).

Experiment 1 evaluated these three accounts as mathemat-
ical models that predict performance on an object relation
memory task as a function of the number of objects to be
remembered and the number of relations to be remembered
among those objects. The results supported the hybrid model,
which accounted for 90 % of the variance in subjects’ accu-
racy on this task. Experiment 2 compared observers’memory
for objects’ relative sizes with their memory for objects’
absolute sizes and found that the two kinds of memory are
differentially sensitive to the time between encoding and test,
an effect that suggests that observers can encode relative size
in memory explicitly, as a visual property in its own right (i.e.,
it is not something we simply compute after the fact by storing
objects’ absolute sizes in memory). Experiment 3 tested the
predictions of a process version of the hybrid model. Rather
than simply predicting accuracy as a function of the number of

Fig. 14 Left: RMSD fits of the process model simulation results against the predictions of the mathematical version of the hybrid model. Right: For
comparison, RMSD fits of human data (Experiment 1) to the same mathematical model
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objects and relations to be remembered (as tested in
Experiment 1), this model makes detailed predictions about
subjects’ performance as a function of which object pairs they
encode during study and which they are tested on at query.
Ignoring recency effects in subjects’ performance (which the
model, with its perfect memory, does not show), this model
accounts for 93 % of the variance in subjects’ accuracy on an
object relation memory task.

Together, the results of Experiment 2 suggest that observers
can represent visual relations (at least relative size) explicitly
in WM, and those of Experiments 1 and 3 support the hypoth-
esis that visual WM can hold roughly two pairs of objects
along with all the spatial relations between the members of
each pair. These results have a number of counterintuitive
implications for our understanding of the capacity and curren-
cy of visual WM.

First, they suggest that conceptualizing the currency of WM
simply as “objects” or as “role-bindings” is too simple. Visual
WM, at least, appears to be more intelligent than that, encoding
pairs of objects in pairs of “slots,” but “stacking” all the
relations between the objects into the same “slots” in WM.
This approach avoids both the ambiguity of the purely object-
based account (e.g., making it possible not only to know that
object 1 is larger than something, but also to know what,
specifically, it is larger than) and the large WM resources
demanded by the pure items-as-bindings account (e.g., 36
“slots” to hold just three relations among four objects). In this
sense, the hybrid account seems like an intelligent compromise
between these two traditional accounts of the currency of WM.

A second counterintuitive implication of the hybrid model
is that an “object,” as defined in the stimulus or by the
experimenter, is not the same thing as an “object” as defined
in terms of the resource limitations of WM: In the stimulus
(and probably in the mind of the experimenter), object 1 in
Fig. 2 is simply object 1. But if an observer encodes, for
example, larger (1, 0) and larger (2, 1) into his or her WM,
then object 1 in the context of its relation to object 0 occupies a
different slot in WM—is effectively a different item in the
currency ofWM—than object 1 in the context of its relation to
object 2. In this respect (as in many others in experimental
psychology), the mind of the subject may not respect the
definitions assumed in the mind of the experimenter.

A third implication of the findings reported here—in par-
ticular, those of Experiment 3—is that performance on a WM
task is not necessarily a straightforward function of the rela-
tion between the query and the contents of WM. As is illus-
trated by subjects’ high level of accuracy in the right for the
wrong reason condition of Experiment 3, a person may per-
form well on a WM query even if he or she never actually
encoded the relation embodied in the query. In this context, it
is important to note that subjects’ high accuracy in this con-
dition cannot be attributed to simple, after-the-fact strategies
such as reasoning by transitive inference (e.g., “I know that

object 2 was larger than object 1 and 1 was larger than 0, so I
can infer that 2 was larger than 0”). This interpretation is
inconsistent with the fact that encoding [0, 1] and [2, 3] helps
subjects to correctly answer that 3 was larger than 0. But since
the pairs [0, 1] and [2, 3] share no arguments, they do not afford
transitive reasoning. It appears that, rather than using a rational,
deliberative process such as transitive inference, our subjects
were basing their 3 versus 0 judgment (and related right for the
wrong reason judgments) on a process more akin to the
retrieval-based heuristic embodied in the hybrid model. As is
illustrated by our subjects’ performance in Experiment 3, such
heuristics may provide a useful (albeit fallible; recall the deeply
misleading case) basis for making (mostly accurate) relational
judgments even in the face of a sharply limited WM capacity.

A related implication of the results of Experiment 3 con-
cerns the difference between the subjects’ (and the model’s)
performance in the right for the wrong reason and one role
binding conditions. In right for the wrong reason, the model/
subject encodes two role bindings that both point in the
direction of the right answer (e.g., encoding both that 0 is
smaller and that 2 is larger and so answering correctly that 2
was larger than 0). In one role binding, only one of these
bindings gets encoded. Although, in principle, the one binding
could be used to make an educated guess at the right answer,
neither the model nor the human subjects appear to use this
information, as evidenced both by the superior performance in
right for the wrong reason, relative to one role binding, and by
the equivalence of one role binding to, for example,
misleading (where one queried binding is again encoded but
points to the wrong answer). Together, these results suggest
that the human observer bases his or her judgments on con-
sistent conjunctionsof role bindings (e.g., 0 is smaller and 2 is
larger), rather than on single bindings in isolation (e.g., 2 is
larger). This result is inconsistent with any account that simply
treats relational roles as object features (e.g., Hummel &
Biederman’s, 1992, JIM model and the items-as-objects ac-
count from the visual WM literature) or otherwise asymmet-
rically codes relations as properties of a single object (e.g.,
Roth & Franconeri, 2012).

Visual processingmay be especially well-suited to relation-
al “stacking” as embodied in the hybrid model proposed here.
Although visual perception is subject to attentional bottle-
necks at multiple levels of processing, it is also the case that
a great deal of visual computation goes on in parallel all over
the visual field. Such parallel processing may naturally afford
computing and storing multiple spatial relations between a
pair of objects at the same time (see Hummel & Biederman,
1992). By contrast, verbal stimuli, whether spoken or read, are
necessarily processed in a sequential fashion. It is interesting
to wonder whether the “stacking” strategy the visual system
seems to use with visual stimuli may also apply to more
abstract (including verbal) materials for the purposes of
“higher” cognition: If one is told that “John loves Mary” and
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“John is taller than Mary,” can one stack these two relations
into the single proposition loves-and-taller-than (John,
Mary)? Or must these two propositions, if presented verbally,
always require four slots in WM?

Open questions and future directions

The data presented here do not challenge the well-
supported conclusion that the capacity of WM is roughly
three to five “items” across multiple domains in vision
and cognition (e.g., Avons et al., 1994; Baddeley et al.,
1975; Cowan et al., 1997; Halford et al., 2005; Hitch
et al., 1996; Levy, 1971; Longoni et al., 1993; Luck &
Vogel, 1997; Murray, 1968; Peterson & Johnson, 1971;
Song & Jiang, 2006; Woodman & Vogel, 2008; for re-
views, see Baddeley, 2003; Cowan, 2001), and they do
not speak (at least not directly) to the issue of whether the
capacity of WM is better conceptualized in terms of
“slots” or some other, more general, notion of “resources”
(e.g., Alvarez & Cavanaugh, 2004; Alvarez & Oliva,
2009; Bays & Husain, 2008). However, they underscore
the importance of understanding the currency of WM—
and understanding the operations that use the contents of
WM for making judgments—for understanding the nature
of WM and its role in perception and cognition.

The findings presented here are preliminary, in that
they are based on a restricted set of stimuli and behav-
ioral tasks, and many open questions remain. Our stimuli
were intentionally designed to present novel shapes in an
impoverished context, so it is unclear how our findings
will generalize to more natural, or familiar, objects in
more natural scenes. For example, how would subjects’
performance differ if, say, the relative sizes of two ob-
jects in a display contradict or complement their relative
sizes as real objects (e.g., as when the image of a mouse
is larger than the image of a cat). We have also discussed
our stimuli as collections of “objects,” but it unclear
whether, perceptually, they are more naturally thought
of as separate objects or as parts of a single object. For
example, among other things, in every one of our dis-
plays, every object appeared to be “touching” or over-
lapping at least one other object. Although we did not
mention it in the results of Experiment 1, we analyzed
subjects’ performance as a function of whether the que-
ried objects had been touching in the study display and
found that this variable had no effect on performance. In
contrast, Saiki and Hummel (1998) found evidence that
whether two figures appear to touch does affect subjects’
perception of the spatial relations between them (specif-
ically, the perceptual binding of the relations to the parts
so related). Our findings also do not speak to the ques-
tion of whether our subjects’ errors reflect failures of
perception, encoding, or memory: For example, how

would their performance change if we doubled or tripled
the time they had to look at the displays? Finally, the
results presented here do not speak to the question of
how different kinds of WM may work together (or at
odds) in the service of perceiving and remembering
spatial relations: Are the same cognitive and neural re-
sources responsible for representing both objects and the
relations between them? To our knowledge, all of these
questions remain largely, if not completely, open.

Appendix

The model is an eight-layer artificial neural network
based loosely on Hummel and Biederman’s (1992) JIM
model of object recognition. Layers 3–7 of the hybrid
model are numbered according to the corresponding
layers of the JIM model. The model’s third layer repre-
sents objects (random polygons from Experiments 1 and
3) in terms of their identity (one unit per polygon;
“Shape Attrib. Units” in Figure A1, Layer 3), location
in the horizontal and vertical dimensions of the visual
field (10 units each in Layer 3), and size (10 units in
Layer 3). Units in Layer 7 encode collections of poly-
gons in specific arrangements corresponding to entire
encoding displays from Experiments 1 and 3 (e.g.,
Fig. 2 in the main text; see also Figure A1). Units in
Layer 4 compute (Layer 4) and represent (Layer 5) the
relative sizes and locations of the polygons. Units in
Layer 5 store polygons in specific relational role bind-
ings into memory (e.g., “polygon1+larger+left_of+
below”; Layer 6), pairs of polygons in specific stacks
of relations (e.g., “larger+left_of+below (polygon1, poly-
gon0)”; Layer 6.5), and whole configurations (i.e.,
encoding displays; Layer 7) into the model’s memory.

Units in Layers 1 and 2 serve as “attentional control”
units that represent and activate specific polygons at
specific sizes and locations in the visual field (e.g.,
“polygon1+size=3+h_location=2+v_location=3”; Layer
2) and specific pairs of polygons (e.g., “polygon0 and
polygon1”; Layer 1). The model attends to a pair of
polygons by activating the corresponding Layer 1 unit,
which activates the Layer 2 units to which it is con-
nected (e.g., the Layer 1 unit for “polygon0 and poly-
gon1” would activate the Layer 2 units for polygons 0
and 1). Layer 2 units mutually inhibit one another so
that, in response to a fixed excitatory input (i.e., from a
Layer 1 unit), they will oscillate out of synchrony with
one other—for example, with the polygon0 unit firing
first, followed by polygon1, followed by polygon0, and
so on (see Hummel & Biederman, 1992; Hummel &
Holyoak, 1997, 2003). In response to the activation of a
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single Layer 1 unit, the result on Layer 3 is two
mutually desynchronized patterns of activation: one
representing polygon0 in terms of its identity/shape,
size, and location, and the other representing polygon1
in terms of its identity/shape, size, and location. These
synchrony/asynchrony relations, imposed by the units in
Layer 2, are carried forward through Layers 3–6 and
represent the bindings of polygons to their basic attri-
butes (Layer 3) and their relations to one another
(Layers 5 and 6). Units in Layer 6 learn to respond to
conjunctions of units in Layers 3 and 5 (and thus
represent polygons in specific relational roles), and units
in Layer 6.5 learn to respond to specific conjunctions of
units in Layer 6 (and thus represent pairs of polygons in
specific relations). Layer 1 units (corresponding to pairs
of polygons) are activated, one at a time (two Layer 1
units per display), with the result that the model pro-
cesses and encodes polygons in pairs. Units in Layer 7
learn to respond to conjunctions of units in Layer 6.5
and thus come to represent pairs of pairs of polygons—
that is, approximations of entire encoding displays (as
elaborated in the main text).

All the units composing the model are basic leaky integra-
tors (with the exception of those in Layer 1, whose activations

are simply set by the user, and those in Layer 4, described
below):

Δai ¼ γ ai−nið Þ−δai; ð1Þ

where ai is the activation of unit i, ni is the net (excitatory plus
inhibitory) instantaneous input to i, and γ and δ are growth and
decay rates, respectively. Units in Layer 4 act as AND-gates,
which represent conjunctions of metric values and relational
roles (e.g., larger-and-size5) and take as their activation the
product of the activation of the corresponding metric unit in
Layer 3 (here, size5) and the time-delayed activations of all
other relevant Layer 3 units (here, size1 . . . size4—i.e., all
sizes smaller than size5). In this way, the units in Layer 4 form
comparitor circuits that take metric values (e.g., specific sizes)
as input and produce categorical relations (e.g., larger and
smaller) as output on Layer 5 (see Doumas et al., 2008;
Hummel & Biederman, 1992). All learning in the model is
performed by the simple Hebbian rule:

Δwij ¼ f aia j

� �
; ð3Þ

where wij is the (excitatory) connection weight from unit j to
unit i. All inhibitory weights in the model have fixed
values of −1.0.

The model’s basic large-scale operations consist of
encoding (i.e., encoding a display into memory during the
encoding phase of Experiments 1 and 3) and retrieval (i.e.,
probed with a pair of polygons, attempting to recover their
relations, as in the query phase of Experiments 1 and 3).

During encoding, pairs of polygons are presented to the
model (one pair at a time) by activating units in Layer 1. These
units activate Layer 2 units, which become active (“fire”) out of
synchrony with one another, imposing patterns of activation on
Layer 3, each of which represents a single polygon in terms of its

Fig. A1 The model represents objects in pairs. Units filled in the same
color are firing (i.e., becoming active) in synchrony with one another;
those in different colors are firing out of synchrony. Left panel: The
encoding of the pair [0, 1] of the display illustrated in the lower right of

the panel. Orange units represent polygon0, those in green polygon1. The
yellow unit represents the [0, 1] pair, and the black unit the (emerging)
display as a whole. Right panel: The encoding of pair [2, 3]. See the text
for details
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shape andmetric properties (size and location). These patterns of
activation propagate forward through the model’s higher layers,
with the result that the display is encoded in themdoel’s memory
as two pair of polygons (Layer 7), with every relation encoded
between the members of each pair (Layers 6 and 6.5).

Retrieval works just like encoding, with the following excep-
tions. (1) The units in Layer 2 activate representations of the
polygons in terms of their shapes (“Shape Attrib.” units in Layer
3), but not their locations or sizes. This convention corresponds
to our practice (Experiments 1 and 3) of presenting the polygons
at query centered on the screen and of equal sizes. (2) Rather
than encoding the resulting patterns of activation in Layers 6 . . .
7, existing units in those layers (established during the corre-
sponding encoding phase) are activated (by the Shape Attrib.
units in Layer 3) and allowed to feed activation backward, from
Layer 7 to Layer 6.5, from 6.5 to 6, and from 6 to 5, activating a
representation of the likely relations between those polygons in
the corresponding encoding phase. In other words, during re-
trieval, the model attemps to remember or infer what the relation
between the polygons had been during the corresponding phase.
The relations so activated during this phase are taken as the
model’s response on that retrieval trial. For example, if, queried
with polygons 0 and 1 in Figure A1, the model activates larger
in synchrony with 1 and smaller in synchrony with 0, then we
take that pattern of activation as the model responding that 1 had
been larger than 0 in the encoded stimulus.
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