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C H A P T E R 4

Approaches to Modeling Human Mental
Representations: What Works, What

Doesn’t, and Why

Leonidas A. A. Doumas
John E. Hummel

Relational Thinking

A fundamental aspect of human intelligence
is the ability to acquire and manipulate
relational concepts. Examples of relational
thinking include our ability to appreciate
analogies between seemingly different ob-
jects or events (e.g., Gentner, 1983 ; Gick
& Holyoak, 1980, 1983 ; Holyoak & Tha-
gard, 1995 ; see Holyoak, Chap. 6), our abil-
ity to apply abstract rules in novel situations
(e.g., Smith, Langston, & Nisbett, 1992),
our ability to understand and learn language
(e.g., Kim, Pinker, Prince, & Prasada, 1991 ),
and even our ability to appreciate percep-
tual similarities (e.g., Goldstone, Medin, &
Gentner, 1991 ; Hummel, 2000; Hummel &
Stankiewicz, 1996; Palmer, 1978; see Gold-
stone & Son, Chap. 2). Relational thinking
is ubiquitous in human cognition, underly-
ing everything from the mundane (e.g., the
thought “the mug is on the desk”) to the
sublime (e.g., Cantor’s use of set theory to
prove that the cardinal number of the re-
als is greater than the cardinal number of
the integers).

Relational thinking is so commonplace
that it is easy to assume the psychologi-
cal mechanisms underlying it are relatively
simple. They are not. The capacity to form
and manipulate relational representations
appears to be a late evolutionary develop-
ment (Robin & Holyoak, 1995), closely tied
to the increase in the size and complexity
of the frontal cortex in the brains of higher
primates, especially humans (Stuss & Ben-
son, 1986). Relational thinking also devel-
ops relatively late in childhood (see, e.g.,
Smith, 1989; Halford, Chap. 22). Along with
language, the human capacity for relational
thinking is the major factor distinguish-
ing human cognition from the cognitive
abilities of other animals (for reviews, see
Holyoak & Thagard, 1995 ; Oden, Thomp-
son, & Premack, 2001 ; Call & Tomasello,
Chap. 25).

Relational Representations

Central to understanding human relational
thinking is understanding the nature of the
mental representations underlying it: How
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does the mind represent relational ideas such
as “if every element of set A is paired with
a distinct element of set B, and there are
still elements of B left over, then the car-
dinal number of B is greater than the cardi-
nal number of A,” or even simple relations
such as “John loves Mary” or “the mag-
azine is next to the phone”? Two prop-
erties of human relational representations
jointly make this apparently simple question
surprisingly difficult to answer (Hummel
& Holyoak, 1997): As elaborated in the
next sections, human relational representa-
tions are both symbolic and semantically rich.
Although these properties are straightfor-
ward to account for in isolation, account-
ing for both together has proven much
more challenging.

relational representations are symbolic

A symbolic representation is one that rep-
resents relations explicitly and specifies the
arguments to which they are bound. Rep-
resenting relations explicitly means having
primitives (i.e., symbols, nodes in a network,
neurons) that correspond specifically to rela-
tions and/or relational roles. This definition
of “explicit,” which we take to be uncontro-
versial (see also Halford et al., 1998; Holland
et al., 1986; Newell, 1990), implies that rela-
tions are represented independently of their
arguments (Hummel & Biederman, 1992 ;
Hummel & Holyoak, 1997, 2003a). That is,
the representation of a relation cannot vary
as a function of the arguments it happens to
take at a given time, and the representation
of an argument cannot vary across relations
or relational roles.1

Some well-known formal representa-
tional systems that meet this requirement in-
clude propositional notation, labeled graphs,
mathematical notation, and computer pro-
gramming languages (among many others).
For example, the relation murders is repre-
sented in the same way (and means the same
thing) in the proposition murders (Bill, Su-
san) as it is in the proposition murders (Sally,
Robert), even though it takes different ar-
guments across the two expressions. Like-
wise, “2” means the same thing in x2 as in 2

x,

even though its role differs across the two ex-
pressions. At the same time, relational repre-
sentations explicitly specify how arguments
are bound to relational roles. The relation
“murders (Bill, Susan)” differs from “murders
(Susan, Bill)” only in the binding of argu-
ments to relational roles, yet the two expres-
sions mean very different things (especially
to Susan and Bill).

The claim that formal representational
systems (e.g., propositional notation, mathe-
matical notation) are symbolic is completely
uncontroversial. In contrast, the claim that
human mental representations are symbolic
is highly controversial (for reviews, see
Halford et al., 1998; Hummel & Holyoak,
1997, 2003a; Marcus, 1998, 2001 ). The best-
known argument for the role of symbolic
representations in human cognition – the ar-
gument from systematicity – was made by
Fodor and Pylyshyn (1988). They observed
that knowledge is systematic in the sense
that the ability to think certain thoughts
seems to imply the ability to think related
thoughts. For example, a person who un-
derstands the concepts “John,” “Mary,” and
“loves,” and can understand the statement
“John loves Mary,” must surely be able to
understand “Mary loves John.” This prop-
erty of systematicity, they argued, demon-
strates that human mental representations
are symbolic. Fodor and Pylyshyn’s argu-
ments elicited numerous responses from
the connectionist community claiming to
achieve or approximate systematicity in
nonsymbolic (e.g., traditional connectionist)
architectures (for a more recent example,
see Edelman & Intrator, 2003). At the same
time, however, Fodor and Pylyshyn’s defi-
nition of “systematicity” is so vague that it
is difficult or impossible to evaluate these
claims of “systematicity achieved or approx-
imated” (van Gelder & Niklasson, 1994 ; for
an example of the kind of confusion that
has resulted from the attempt to approxi-
mate systematicity, see Edelman & Intrator,
2003 , and the reply by Hummel, 2003). The
concept of “systematicity” has arguably done
more to cloud the debate over the role of
symbolic representations in human cogni-
tion than to clarify it.
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We propose that a clearer way to de-
fine symbolic competence is in terms of the
ability to appreciate what different bind-
ings of the same relational roles and fillers
have in common and how they differ (see
also Garner, 1974 ; Hummel, 2000; Hummel
& Holyoak, 1997, 2003a; Saiki & Hummel,
1998). Under this definition, what matters
is the ability to appreciate what “John loves
Mary” has in common with “Mary loves
John” (i.e., the same relations and argu-
ments are involved) and how they differ (i.e.,
the role-filler bindings are reversed). It does
not strictly matter whether you can “under-
stand” the statements, or even whether they
make any sense. What matters is that you
can evaluate them in terms of the relations
among their components. This same ability
allows you to appreciate how “the glimby
jolls the ronket” is similar to and differ-
ent from “the ronket jolls the glimby,” even
though neither statement inspires much by
way of understanding. To gain a better ap-
preciation of the abstractness of this ability,
note that the ronket and glimby may not
even be organisms (as we suspect most read-
ers initially assume they are), but may in-
stead be machine parts, mathematical func-
tions, plays in a strategy game, or anything
else that can be named.

This definition of symbolic competence
admits to more objective evaluation than
does systematicity: one can empirically eval-
uate, for any f, x, and y, whether someone
knows what f (x, y) has in common with and
how it differs from f (y, x). It is also important
because it relates directly to what we take to
be the defining property of a symbolic (i.e.,
explicitly relational) representation: namely,
as noted previously, the ability to represent
relational roles independently of their argu-
ments and to simultaneously specify which
roles are bound to which arguments (see also
Hummel, 2000, 2003 ; Hummel & Holyoak,
1997, 2003a). It is the independence of roles
and fillers that allows one to appreciate that
the glimby in “the glimby jolls the ronket” is
the same thing as the glimby in “the ron-
ket jolls the glimby”; and it is the ability
to explicitly bind arguments to relational
roles that allows one to know how the two

statements differ. We take the human abil-
ity to appreciate these similarities and differ-
ences as strong evidence that the represen-
tations underlying human relational thinking
are symbolic.

relational representations are

semantically rich

The second fundamental property of hu-
man relational representations, and human
mental representations more broadly, is that
they are semantically rich. It means some-
thing to be a lover or a murderer, and the
human mental representation of these rela-
tions makes this meaning explicit. As a re-
sult, there is an intuitive sense in which loves
(John, Mary) is more like likes (John, Mary)
than murders (John, Mary). Moreover, the
meanings of various relations seem to ap-
ply specifically to individual relational roles,
rather than to relations as indivisible wholes.
For example, it is easy to appreciate that the
agent (i.e., killer) role of murders (x, y) is
similar to the agent role of attempted-murder
(x, y), even though the patient roles dif-
fer (i.e., the patient is dead in the former
case but not the latter); and the patient role
of murder (x, y) is like the patient role of
manslaughter (x, y), even though the agent
roles differ (i.e., the act is intentional in the
former case but not the latter).

The semantic richness of human rela-
tional representations is also evidenced by
their flexibility (Hummel & Holyoak, 1997).
Given statements such as taller-than (Abe,
Bill), tall (Charles), and short (Dave), it is
easy to map Abe onto Charles and Bill onto
Dave, even though doing so requires the rea-
soner to violate the “n-ary restriction” (i.e.,
mapping the argument(s) and role(s) of an
n-place predicate onto those of an m-place
predicate, where m �= n). Given shorter-than
(Eric, Fred), it is also easy to map Eric onto
Bill (and Dave) and Fred onto Abe (and
Charles). These mappings are based on the
semantics of individual roles, rather than, for
instance, the fact that taller-than and shorter-
than are logical opposites: The relation loves
(x, y) is in some sense the opposite of hates
(x, y) [or if you prefer, not-loves (x, y)], but
in contrast to taller-than and shorter-than, in
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which the first role of one relation maps to
the second role of the other, the first role
of loves (x, y) maps to the first role of hates
(x, y) [or not-loves (x, y)]. The point is that
the similarity and/or mappings of various re-
lational roles are idiosyncratic, based not on
the formal syntax of propositional notation,
but on the semantic content of the individual
roles in question. The semantics of relational
roles matter and are an explicit part of the
mental representation of relations.

The semantic properties of relational
roles manifest themselves in numerous other
ways in human cognition. For example, they
influence both memory retrieval (e.g., Gen-
tner, Ratterman, & Forbus, 1993 ; Ross, 1987;
Wharton, Holyoak, & Lange, 1996) and
our ability to discover structurally appro-
priate analogical mappings (Bassok, Wu, &
Olseth, 1995 ; Krawczyk, Holyoak, & Hum-
mel, in press; Kubose, Holyoak, & Hummel,
2002 ; Ross, 1987). They also influence which
inferences seem plausible from a given col-
lection of stated facts. For instance, upon
learning about a culture in which nephews
traditionally give their aunts a gift on a par-
ticular day of the year, it is a reasonable
conjecture that there may also be a day on
which nieces in this culture give their uncles
gifts. This inference is based on the seman-
tic similarity of aunts to uncles and nieces
to nephews, and on the semantics of gift
giving, not the syntactic properties of the
give-gift relation.

In summary, human mental representa-
tions are both symbolic (i.e., they explic-
itly represent relations and the bindings of
relational roles to their fillers) and seman-
tically rich (in the sense that they make
they semantic content of individual rela-
tional roles and their fillers explicit). A com-
plete account of human thinking must elu-
cidate how each of these properties can be
achieved and how they work together. An
account that achieves one property at the
expense of the other is at best only a partial
account of human thinking. The next section
reviews the dominant approaches to model-
ing human mental representations, with an
emphasis on how each approach succeeds or
fails to capture these two properties of hu-

man mental representations. We review tra-
ditional symbolic approaches to mental rep-
resentation, traditional distributed connec-
tionist approaches, conjunctive distributed
connectionist approaches (based on tensor
products and their relatives), and an ap-
proach based on dynamic binding of dis-
tributed and localist connectionist represen-
tations into symbolic structures.

Approaches to Modeling Human
Mental Representation

Symbol-Argument-Argument Notation

The dominant approach to modeling rela-
tional representations in the computational
literature is based on propositional notation
and formally equivalent systems (including
varieties of labeled graphs and high-rank ten-
sor representations). These representational
systems – which we refer to collectively
as symbol-argument-argument notation,
or “SAA” – borrow conventions directly
from propositional calculus, and are com-
monly used in symbolic models based on
production systems (see Lovett & Anderson,
Chap. 1 7, for a review), many forms of graph
matching (e.g., Falkenhainer et al., 1989;
Keane et al., 1994) and related algorithms.

SAA represents relations and their argu-
ments as explicit symbols and represents the
bindings of arguments to relational roles in
terms of the locations of the arguments in
the relational expression. For example, in the
proposition loves (John, Mary), John is
bound to the lover role by virtue of appear-
ing in the first slot after the open paren-
thesis, and Mary to the beloved by virtue of
appearing in the second slot. Similarly, in a
labeled graph the top node (of the local sub-
graph coding “John loves Mary”) represents
the loves relation, and the nodes directly be-
low it represent its arguments, with the bind-
ings of arguments to roles captured, for ex-
ample, by the order (left to right) in which
those arguments are listed. These schemes,
which may look different at first pass, are in
fact isomorphic. In both cases, the relation
is represented by a single symbol, and the
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bindings of arguments to relational roles are
captured by the syntax of the notation (as list
position within parentheses, as the locations
of nodes in a directed graph, etc.).

Models based on SAA are meaningfully
symbolic in the sense described previously:
They represent relations explicitly (i.e., in-
dependently of their arguments), and they
explicitly specify the bindings of relational
roles to their arguments. This fact is no sur-
prise, given that SAA is based on represen-
tational conventions that were explicitly de-
signed to meet these criteria. However, the
symbolic nature of SAA is nontrivial because
it endows models based on SAA with all
the advantages of symbolic representations.
Most important, symbolic representations
enable relational generalization – generaliza-
tions that are constrained by the relational
roles that objects play, rather than simply
the features of the objects themselves (see
Holland et al., 1986; Holyoak & Thagard,
1995 ; Hummel & Holyoak, 1997, 2003a;
Thompson & Oden, 2000). Relational gener-
alization is important because, among other
things, it makes it possible to define, match,
and apply variablized rules. (It also makes
it possible to make and use analogies, to
learn and use schemas, and ultimately to
learn variablized rules from examples; see
Hummel & Holyoak, 2003a.) For example,
with a symbolic representational system, it
is possible to define the rule “if loves (x, y)
and loves (y, z) and not [loves (y, x)], then
jealous (x, z)” and apply that rule to any
x, y, and z that match its left-hand (“if”)
side. As elaborated shortly, this important
capacity, which plays an essential role in hu-
man relational thinking, lies fundamentally
beyond the reach of models based on non-
symbolic representations (Holyoak & Hum-
mel, 2000; Hummel & Holyoak, 2003a;
Marcus, 1998).

Given the symbolic nature of SAA, it is no
surprise that it has figured so prominently in
models of relational thinking and symbolic
cognition more generally (see Lovett & An-
derson, Chap. 1 7). Less salient are the limi-
tations of SAA. It has been known for a long
time that SAA and related representational
schemes have difficulty capturing shades of

meaning and other subtleties associated with
semantic content. This limitation was a cen-
tral focus of the influential critiques of sym-
bolic modeling presented by the connection-
ists in the mid-1980s (e.g., Rumelhart et al.,
1986). A review of how traditional symbolic
models have handled this problem (typi-
cally with external representational systems
such as lookup tables or matrices of hand-
coded “similarity” values between symbols;
see Lovett & Anderson, Chap. 1 7) also re-
veals that the question of semantics in SAA
is, in the very least, a thorny inconvenience
(Hummel & Holyoak, 1997). However, at
the same time, it is tempting to assume it is
merely an inconvenience – that surely there
exists a relatively straightforward way to add
semantic coding to propositional notation
and other forms of SAA, and that a solu-
tion will be found once it becomes important
enough for someone to turn their attention
to it. In the mean time, it is surely no rea-
son to abandon SAA as a basis for modeling
human cognition.

However, it turns out that it is more than
a thorny inconvenience: As demonstrated
by Doumas and Hummel (2004), it is logi-
cally impossible to specify the semantic con-
tent of relational roles within an SAA rep-
resentation. In brief, SAA representations
cannot represent relational roles explicitly
and simultaneously specify how they come
together to form complete relations. The
reason for this limitation is that SAA repre-
sentations specify role information only im-
plicitly (see Halford et al., 1998). Specify-
ing this information explicitly requires new
propositions, which must be related to the
original relational representation via a sec-
ond relation. In SAA, this results in a new
relational proposition, which itself implies
role representations to which it must be re-
lated by a third relational proposition, and
so forth, ad infinitum. In short, attempt-
ing to use SAA to link relational roles to
their parent relations necessarily results in
an infinite regress of nested “constituent of”
relations specifying which roles belong to
which relations/roles (see Doumas & Hum-
mel, 2004 for the full argument). As a result,
attempting to use SAA to specify how roles
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form complete relations renders any SAA
system ill-typed (i.e., inconsistent and/or
paradoxical; see, e.g., Manzano, 1996).

The result of this limitation is that SAA
systems are forced to use external (i.e., non-
SAA) structures to represent the meaning of
symbols (or to approximate those meanings,
e.g., with matrices of similarity values) and
external control systems (which themselves
cannot be based on SAA) to read the SAA,
access the external structures and relate the
two. Thus, it is no surprise that SAA-based
models rely on lookup tables, similarity ma-
trices and so forth, to specify how different
relations and objects are semantically related
to one another: It is not merely a conve-
nience, it is a necessity.

This property of SAA sharply limits its
utility as a general approach to modeling
human mental representations. In particu-
lar, it means that the connectionist critiques
of the mid-1980s were right: Not only do
traditional symbolic representations fail to
represent the semantic content of the ideas
they mean to express, the SAA representa-
tions on which they are based cannot even be
adapted to do so. The result is that SAA is
ill equipped, in principle, to address those
aspects of human cognition that depend
on the semantic content of relational roles
and the arguments that fill them (which,
as summarized previously, amounts to a
substantial proportion of human cognition).
This fact does not mean that models based
on SAA (i.e., traditional symbolic models)
are “wrong,” only that they are incomplete.
SAA is at best only a shorthand (a very
short hand) approximation of human mental
representations.

Traditional Connectionist
Representations

In response to limitations of traditional sym-
bolic models, proponents of connectionist
models of cognition (see, e.g., Elman et al.,
1996; Rumelhart et al., 1986; St. John & Mc-
Clelland, 1990; among many others) have
proposed that knowledge is represented, not
as discrete symbols that enter into symbolic
expressions, but as patterns of activation
distributed over many processing elements.

These representations are distributed in the
sense that (1 ) any single concept is repre-
sented as a pattern (i.e., vector) of activa-
tion over many elements (“nodes” or “units”
that are typically assumed to correspond
roughly to neurons or small collections of
neurons), and (2) any single element will par-
ticipate in the representation of many differ-
ent concepts.2 As a result, two patterns of ac-
tivation will tend to be similar to the extent
that they represent similar concepts: In con-
trast to SAA, distributed connectionist rep-
resentations provide a natural basis for rep-
resenting the semantic content of concepts.
Similar ideas have been proposed in the con-
text of latent semantic analysis (Landauer
& Dumais, 1997) and related mathemati-
cal techniques for deriving similarity metrics
from the co-occurrence statistics of words in
passages of text (e.g., Lund & Burgess, 1996).
In all these cases, concepts are represented
as vectors, and vector similarity is taken as
an index of the similarity of the corres-
ponding concepts.

Because distributed activation vectors
provide a natural basis for capturing the sim-
ilarity structure of a collection of concepts
(see Goldstone & Son, Chap. 2), connection-
ist models have enjoyed substantial success
simulating various kinds of learning and gen-
eralization (see Munakata & O’Reilly, 2003):
Having been trained to give a particular
output (e.g., generate a specific activation
vector on a collection of output units) in
response to a given input (i.e., vector of
activations on a collection of input units),
connectionist networks tend to generalize
automatically (i.e., activate an appropriate
output vector, or a close approximation of
it) in response to new inputs that are similar
to trained inputs. In a sense, connectionist
representations are much more flexible than
symbolic representations based on varieties
of SAA. Whereas models based on SAA re-
quire predicates to match exactly in order to
treat them identically,3 connectionist mod-
els generalize more gracefully, based on the
degree of overlap between trained patterns
and new ones.

In another sense, however, connectionist
models are substantially less flexible than
symbolic models. The reason is that the
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distributed representations used by tradi-
tional connectionist models are not sym-
bolic in the sense defined previously. That is,
they cannot represent relational roles inde-
pendently of their fillers and simultaneously
specify which roles are bound to which fillers
(Hummel & Holyoak, 1997, 2003a). Instead,
a network’s knowledge is represented as sim-
ple vectors of activation. Under this ap-
proach, relational roles (to the extent that
they are represented at all) are either repre-
sented on separate units from their potential
fillers (e.g., with one set of units for the lover
role of the loves relation, another set for the
beloved role, a third set for John, a fourth
set for Mary, etc.), in which case the bind-
ings of roles to their fillers is left unspecified
(i.e., simply activating all four sets of units
cannot distinguish “John loves Mary” from
“Mary loves John” or even from a statement
about a narcissistic hermaphrodite); or else
units are dedicated to specific role-filler con-
junctions (e.g., with one set of units for “John
as lover” another for “John as beloved”, etc.;
e.g., Hinton, 1990), in which case the bind-
ings are specified, but only at the expense of
role-filler independence (e.g., nothing rep-
resents the lover or beloved roles, indepen-
dently of the argument to which they hap-
pen to be bound). In neither case are the
resulting representations truly symbolic.

Indeed, some proponents of traditional
connectionist models (e.g., Elman et al.,
1996) – dubbed “eliminative connectionists”
by Pinker and Prince (1988; see also Marcus,
1998) for their explicit desire to eliminate
the need for symbolic representations from
models of cognition – are quite explicit in
their rejection of symbolic representations as
a component of human cognition. Instead of
representing and matching symbolic “rules,”
eliminative (i.e., traditional) connectionist
models operate by learning to associate vec-
tors of features (where the features corre-
spond to individual nodes in the network).
As a result, they are restricted to generaliz-
ing based on the shared features in the train-
ing set and the generalization set. Although
the generalization capabilities of these net-
works often appear quite impressive at first
blush (especially if the training set is judi-
ciously chosen to span the space of all possi-

ble input and output vectors; e.g., O’Reilly,
2001 ), the resulting models are not capable
of relational generalization (see Hummel &
Holyoak, 1997, 2003a; Marcus, 1998, 2001 ,
for detailed discussions of this point).

A particularly clear example of the im-
plications of this limitation comes from the
story Gestalt model of story comprehension
developed by St. John (1992 ; St. John &
McClelland, 1990). In one computational
experiment (St. John, 1992 , simulation 1 ),
the model was first trained with 1 ,000,000

short texts consisting of statements based on
1 36 constituent concepts. Each story instan-
tiated a script such as “<person> decided to
go to <destination>; <person> drove <ve-
hicle> to <destination>” (e.g., “George de-
cided to go to a restaurant; George drove a
Jeep to the restaurant”; “Harry decided to
go to the beach; Harry drove a Mercedes to
the beach”).

After the model had learned a network
of associative connections based on the
1 ,000,000 examples, St. John tested its abil-
ity to generalize by presenting it with a text
containing a new statement, such as “John
decided to go to the airport.” Although the
statement as a whole was new, it referred
to people, objects and places that had ap-
peared in the examples used for training. St.
John reported that when given a new exam-
ple about deciding to go to the airport, the
model would typically activate the restau-
rant or the beach (i.e., the destinations in
prior examples of the same script) as the
destination, rather than making the contex-
tually appropriate inference that the per-
son would drive to the airport. This type
of error, which would appear quite unnat-
ural in human comprehension, results from
the model’s inability to generalize relation-
ally (e.g., if a person wants to go location x,
then x will be the person’s destination – a
problem that requires the system to repre-
sent the variable x and its value, indepen-
dently of its binding to the role of desired
location or destination). As St. John noted,
“Developing a representation to handle role
binding proved to be difficult for the model”
(1992 , p. 294).

In general, although an eliminative con-
nectionist model can make “inferences” on
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which it has been directly trained (i.e.,
the model will remember particular associa-
tions that have been strengthened by learn-
ing), the acquired knowledge may not gen-
eralize at all to novel instantiations that
lie outside the training set (Marcus, 1998,
2001 ). For example, having learned that Al-
ice loved Sam, Sam loved Betty, and Al-
ice was jealous of Betty, and told that John
loves Mary and Mary loves George, a per-
son is likely to conjecture that John is likely
to be jealous of George. An eliminative
connectionist system would be a complete
loss to make any inferences: John, Mary,
and George are different people than Al-
ice, Sam, and Betty (Holyoak & Hummel,
2000; Hummel & Holyoak, 2003a; Phillips &
Halford, 1997).

A particularly simple example that re-
veals such generalization failures is the iden-
tity function (Marcus, 1998). Suppose, for
example, that a human reasoner was trained
to respond with “1 ” to “1 ,” “2” to “2 ,” and
“3 ” to “3 .” Even with just these three ex-
amples, the human is almost certain to re-
spond with “4” to “4 ,” without any direct
feedback that this is the correct output for
the new case. In contrast, an eliminative con-
nectionist model will be unable to make
this obvious generalization. Such a model
can be trained to give specific outputs to
specific inputs (e.g., as illustrated in Figure
4 .1 ). But when training is over, it will have
learned only the input–output mappings on
which it was trained (and perhaps those that
can be represented by interpolating between
trained examples; see Marcus, 1998): Lack-
ing the capacity to represent variables, ex-
trapolation outside the training set is impos-
sible. In other words, the model will simply
have learned to associate “1 ” with “1 ,” “2”
with “2 ,” and “3 ” with “3 .” A human, by con-
trast, will have learned to associate input (x)
with output (x), for any x; and doing so re-
quires the capacity to bind any new number
(whether it was in the training space or not)
to the variable x. Indeed, most people are
willing to generalize even beyond the world
of numbers. We leave it to the reader to give
the appropriate outputs in response to the
following inputs: “A”; “B”; “flower.”

The deep reason the eliminative connec-
tionist model illustrated in Figure 4 .1 fails
to learn the identity function is that it vio-
lates variable/value (i.e., role/filler) indepen-
dence. The input and output units in Figure
4 .1 are intentionally mislabeled to suggest
that they represent the concepts “1 ,” “2 ,” etc.
However, in fact, they do not represent these
concepts at all. Instead, the unit labeled “1 ”
in the input layer represents, not “1 ,” but “1
as the input to the identity function.” That is, it
represents a conjunctive binding of the value
“1 ” to the variable “input to the function.”
Likewise, the unit labeled “1 ” in the output
layer represents, not “1 ,” but “1 ” as output
of the identity function. Thus, counter to
initial appearances, the concept “1 ” is not
represented anywhere in the network. Nei-
ther, for that matter, is the concept “input
to the identity function”: Every unit in the
input layer represents some specific input to
the function; there are no units to represent
input as a generic unbound variable.

Because of this representational con-
vention (i.e., representing variable-value
conjunctions instead of variables and val-
ues), traditional connectionist networks are
forced to learn the identity function as a
mapping from one set of conjunctive units
(the input layer) to another set of conjunc-
tive units (the output layer). This mapping,
which to our eye resembles an approxima-
tion of the identity function, f(x) = x, is, to
the network, just an arbitrary mapping. It
is arbitrary precisely because the unit repre-
senting “1 as output of the function” bears
no relation to the unit representing “1 as in-
put to the function.” Although any func-
tion specifies a mapping [e.g., a mapping
from values of x to values of f(x)], learning a
mapping is not the same thing as learning a
function. Among other differences, a func-
tion can be universally quantified [e.g., ∀x,
f(x) = x], whereas a finite mapping cannot;
universal quantification permits the function
to apply to numbers (and even nonnum-
bers) that lie well outside the “training” set.
The point is that the connectionist model’s
failure to represent variables independently
of their values (and vice versa) relegates it
to (at best) approximating a subset of the
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Figure 4.1 . Diagram of a two-layer
connectionist network for solving the identity
function in which the first three units (those
representing the numbers 1 , 2 , and 3) have been
trained and the last two (those representing the
numbers 4 and 5) have not. Black lines indicate
already trained connections, whereas grey lines
untrained connections. Thicker lines indicate
highly excitatory connections, whereas thinner
lines slightly excitatory or slightly inhibitory
connections.

identity function as a simple, and ultimately
arbitrary, mapping (see Marcus, 1998). Peo-
ple, by contrast, represent variables indepen-
dently of their values (and vice versa), and
so can recognize and exploit the decidedly
nonarbitrary relation between the function’s
inputs and its outputs: To us, but not to
the network, the function is not an arbitrary
mapping at all, but rather a trivial game of
“say what I say.”

As these examples illustrate, the power of
human reasoning and learning, most notably
our capacity for sophisticated relational gen-
eralizations, is dependent on the capacity
to represent relational roles (variables) and
bind them to fillers (values). This is precisely
the same capacity that permits composition
of complex symbols from simpler ones. The

human mind is the product of a symbol
system; hence, any model that succeeds in
eliminating symbol systems will ipso facto
have succeeded in eliminating itself from
contention as a model of the human cog-
nitive architecture.

Conjunctive Connectionist
Representations

Some modelers, recognizing both the es-
sential role of relational representations in
human cognition (e.g., for relational gen-
eralization) and the value of distributed
representations, have sought to construct
symbolic representations in connectionist ar-
chitectures. The most common approach is
based on Smolensky’s (1990) tensor prod-
ucts (e.g., Halford et al., 1998) and its
relatives, such as spatter codes (Kanerva,
1998), holographic reduced representations
(HRRs; Plate, 1994), and circular convo-
lutions (Metcalfe, 1990). We restrict our
discussion to tensor products because the
properties of tensors we discuss also apply
to the other approaches (see Holyoak &
Hummel, 2000).

A tensor product is an outer product of
two or more vectors that are treated as an
activation vector (i.e., rather than a matrix)
for the purposes of knowledge representa-
tion (see Smolensky, 1990). In the case of a
rank 2 tensor, uv, formed from two vectors,
u and v, the activation of the ijth element
of uv is simply the product of the activa-
tions of the ith and jth elements of u and v,
respectively: uvij = uivj. Similarly, the ijkth
value of the rank 3 tensor uvw is the product
uvwijk = uivjwk, and so forth, for any num-
ber of vectors (i.e., for any rank).

Tensors and their relatives can be used
to represent role-filler bindings. For exam-
ple, if the loves relation is represented by the
vector u, John by the vector v, and Mary
by the vector w, then the proposition loves
(John, Mary) could be represented by the
tensor uvw; loves (Mary, John) would be rep-
resented by the tensor uwv. This procedure
for representing propositions as tensors – in
which the predicate is represented by one
vector (here, u) and its argument(s) by the
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others (v and w) – is isomorphic with SAA
(Halford et al., 1998): One entity (here, a
vector) represents the relation, other entities
represent its arguments, and the bindings of
arguments to roles of the relation are rep-
resented spatially (note the difference be-
tween uvw and uwv). However, this version
of tensor-based coding is SAA-isomorphic;
the entire relation is represented by a sin-
gle vector or symbol, and arguments are
bound directly to that symbol. Conse-
quently, it provides no basis for differentiat-
ing the semantic features of the various roles
of a relation.

Another way to represent relational bind-
ings using tensors is to represent individual
relational roles as vectors, role-filler bind-
ings as tensors, and complete propositions
as sums of tensors (e.g., Tesar & Smolensky,
1994). For example, if the vector l repre-
sents the lover role of the loves relation, b the
beloved role, j John and m Mary, then loves
(John, Mary) would be represented by the
sum lj + bm, and loves (Mary, John) would
be the sum lm + bj.

Tensors provide a basis for representing
the semantic content of relations (in the case
of tensors that are isomorphic with SAA)
or relational roles (in the case of tensors
based on role-filler bindings) and to repre-
sent role-filler bindings explicitly. Accord-
ingly, numerous researchers have argued that
tensor products and their relatives provide
an appropriate model of human symbolic
representations. Halford and his colleagues
also showed that tensor products based on
SAA representations provide a natural ac-
count of the capacity limits of human work-
ing memory, and applied these ideas to ac-
count for numerous phenomena in relational
reasoning and cognitive development (see
Halford, Chap. 22). Tensors are thus at least
a useful approximation of human relational
representations.

However, tensor products and their
relatives have two properties that limit
their adequacy as a general model of hu-
man relational representations. First, tensors
necessarily violate role-filler independence
(Holyoak & Hummel, 2000; Hummel &
Holyoak, 2003a). This is true both of SAA-

isomorphic tensors (as advocated by Halford
and colleagues) and role-filler binding-based
tensors (as advocated by Smolensky and col-
leagues). A tensor product is a product of
two or more vectors, so the similarity of two
tensors (e.g., their inner product or the co-
sine of the angle between them) is equal to
the product of the similarities of the basic
vectors from which they are constructed. For
example, in the case of tensors ab and cd,
formed from vectors a, b, c, and d:

ab · cd = (a · c)(b · d), (4 .1 )

where the “·” denotes the inner product, and

cos(ab, cd) = cos(a, c)cos(b, d), (4 .2)

where cos(x, y) is the cosine of the angle
between x and y.

In other words, two tensor products are
similar to one another to the extent that their
roles and fillers are similar to one another. If
vectors a and c represent relations (or re-
lational roles) and b and d represent their
fillers, then the similarity of the ab binding
to the cd binding is equal to the similarity of
roles a and c times the similarity of fillers b
and d. This fact sounds unremarkable at first
blush. However, consider the case in which
a and c are identical (for clarity, let us re-
place them both with the single vector r),
but b and d are completely unrelated (i.e.,
they are orthogonal, with an inner product
of zero). In this case,

(rb · rd) = (r · r)(b · d) = 0. (4 .3)

That is, the similarity of rb to rd is zero, even
though both refer to the same relational role.

This result is problematic for tensor-
based representations because a connection-
ist network (and for that matter, probably a
person) will generalize learning from rb to rd
to the extent that the two are similar to one
another. Equation (4 .3) shows that, if b and
d are orthogonal, then rb and rd will be or-
thogonal, even though they both represent
bindings of different arguments to exactly
the same relational role (r). As a result, ten-
sor products cannot support relational gener-
alization. The same limitation applies to all
multiplicative binding schemes (i.e., repre-
sentations in which the vector representing



P1 : JZZ
0521824176c04 .xml CB798B/Holyoak 0 521 82417 6 October 30, 2004 19:25

approaches to modeling human mental representations 83

a binding is a function of the product of
the vectors representing the bound ele-
ments), including HRRs, circular convolu-
tions, and spatter codes (see Hummel &
Holyoak, 2003a).

A second problem for tensor-based repre-
sentations concerns the representation of the
semantics of relational roles. Tensors that are
SAA-isomorphic (e.g., Halford et al., 1998)
fail to distinguish the semantics of differ-
ent roles of the relation precisely because
they are SAA-isomorphic (see Doumas &
Hummel, 2004): Rather than using sepa-
rate vectors to represent a relation’s roles,
SAA-isomorphic tensors represent the rela-
tion, as a whole, using a single vector. Role-
filler binding tensors (e.g., as proposed by
Smolensky and colleagues) do explicitly rep-
resent the semantic content of the individual
roles of a relation. However, these represen-
tations are limited by the summing opera-
tion that is used to conjoin the separate role-
filler bindings into complete propositions.
The result of the summing operation is a “su-
perposition catastrophe” (von der Malsburg,
1981 ) in which the original role-filler bind-
ings – and therefore the original roles and
fillers – are unrecoverable (a sum underde-
termines its addends).

The deleterious effects of this superpo-
sition can be minimized by using sparse
representations in a very high-dimensional
space (Kanerva, 1998; Plate, 1991 ). This
approach works because it minimizes the
representational overlap between separate
concepts. However, minimizing the repre-
sentational overlap also minimizes the pos-
itive effects of distributed representations
(which stem from the overlap between rep-
resentations of similar concepts). In the
limit, sparse coding becomes equivalent to
localist conjunctive coding, with completely
separate codes for every possible conjunc-
tion of roles and fillers. In this case, there
is no interference between separate bind-
ings, but neither is there overlap between
related concepts. Conversely, as the overlap
between related concepts increases, so does
the ambiguity of sums of separate role bind-
ings. The ability to keep separate bindings
separate thus invariably trades off against

the ability to represent similar concepts with
similar vectors. This trade-off is a symp-
tom of the fact that tensors are trapped on
the implicit relations continuum (Hummel &
Biederman, 1992) – the continuum from
holistic (localist) to feature-based (dis-
tributed), vector-based representations of
concepts – characterizing representational
schemes that fail to code relations indepen-
dently of their arguments.

Role-Filler Binding by Vector Addition

What is needed is a way to both represent
roles and their fillers in a distributed fash-
ion (to capture their semantic content), and
simultaneously bind roles to their fillers in
a way that does not violate role-filler inde-
pendence (to achieve meaningfully symbolic
representation and thus relational general-
ization). Tensor products are on the right
track, in the sense that they represent rela-
tions and fillers in a distributed fashion, and
they can represent role-filler bindings – just
not in a way that preserves role-filler inde-
pendence. Accordingly, in the search for a
distributed code that preserves role-filler in-
dependence, it is instructive to consider why,
mathematically, tensors violate it.

The reason is that a tensor is a product
of two or more vectors, so the value of ij th

element of the tensor is a function of the
i th value of the role vector and the j th el-
ement of the filler vector. That is, a tensor
is the result of a multiplicative interaction
between two or more vectors. Statistically,
when two or more variables do not interact –
i.e., when their effects are independent, as
in the desired relationship between roles and
their fillers – their effects are additive (rather
than multiplicative). Accordingly, the way
to bind a distributed vector, r, representing
a relational role to a vector, f, representing
its filler is not to multiply them, but to add
them (Holyoak & Hummel, 2000; Hummel
& Holyoak, 1997, 2003a):

rf = r + f, (4 .4)

where rf is just an ordinary vector (not
a tensor).4
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Binding by vector addition is most com-
monly implemented in the neural network
modeling community as synchrony of neural
firing (for reviews, see Hummel & Holyoak,
1997, 2003a), although it can also be real-
ized in other ways (e.g., as systematic asyn-
chrony for firing; Love, 1999). The basic idea
is that vectors representing relational roles
fire in synchrony with vectors represent-
ing their fillers and out of synchrony with
other role-filler bindings. That is, at each in-
stant in time, a vector representing a role is
“added to” (fires with) the vector represent-
ing its filler.

Binding by synchrony of firing is much
reviled in some segments of the connec-
tionist modeling community. For example,
Edelman and Intrator (2003) dismissed it
as an “engineering convenience.” Similarly,
O’Reilly et al. (2003) dismissed it on the
grounds that (1 ) it is necessarily transient
[i.e., it is not suitable as a basis for stor-
ing bindings in long-term memory (LTM)],
(2) it is capacity limited (i.e., it is only
possible to have a finite number of bound
groups simultaneously active and mutually
out of synchrony; Hummel & Biederman,
1992 ; Hummel & Holyoak, 2003a; Hum-
mel & Stankiewicz, 1996), and (3) bind-
ings represented by synchrony of firing must
ultimately make contact with stored con-
junctive codes in LTM. These limitations do
indeed apply binding by synchrony of firing;
(1 ) and (2) are also precisely the limita-
tions of human working memory (WM) (see
Cowan, 2000). Limitation (3) is meant to
imply that synchrony is redundant: If you
already have to represent bindings conjunc-
tively in order to store them in LTM, then
why bother to use synchrony? The answer
is that synchrony, but not conjunctive cod-
ing, makes it possible to represent roles in-
dependently of their fillers, and thus al-
lows symbolic representations and relational
generalization.

Despite the objections of Edelman and
Intrator (2003), O’Reilly et al. (2003), and
others, there is substantial evidence for bind-
ing by synchrony in the primate visual cortex
(see Singer, 2000, for a review) and frontal
cortex (e.g., Desmedt & Tomberg, 1994 ;

Vaadia et al., 1995). It seems that evolution
and the brain may be happy to exploit “en-
gineering conveniences.” This would be un-
surprising given the computational benefits
endowed by dynamic binding (namely, re-
lational generalization based on distributed
representations), the ease with which syn-
chrony can be established in neural systems,
and the ease with which it can be exploited
(it is well known that spikes arriving in close
temporal proximity have superadditive ef-
fects on the postsynaptic neuron relative to
spikes arriving at very different times). The
mapping between the limitations of human
WM and the limitations of synchrony cited
by O’Reilly et al. (2003) also constitutes in-
direct support for the synchrony hypothe-
sis, as do the successes of models based on
synchrony (for reviews, see Hummel, 2000;
Hummel & Holyoak, 2003b; Shastri, 2003).

However, synchrony of firing cannot be
the whole story. At a minimum, conjunc-
tive coding is necessary for storing bindings
in LTM, and forming localist tokens of roles,
objects, role-filler bindings, and complete
propositions (Hummel & Holyoak, 1997,
2003a). It seems likely, therefore, that an ac-
count of the human cognitive architecture
that includes both “mundane” acts (such as
shape perception, which actually turns out
to be relational; Hummel, 2000) and sym-
bolic cognition (such as planning, reason-
ing, and problem solving) must incorporate
both dynamic binding (for independent rep-
resentation of roles bound to fillers in WM)
and conjunctive coding (for LTM storage
and token formation), and specify how they
are related.

The remainder of this chapter reviews
one example of this approach to knowl-
edge representation – “LISAese,” the rep-
resentational format used by Hummel and
Holyoak’s (1992 , 1997, 2003a) LISA (Learn-
ing and Inference with Schemas and Analo-
gies) model of analogical inference and
schema induction – with an emphasis on
how LISAese permits symbolic representa-
tions to be composed from distributed (i.e.,
semantically rich) representations of roles
and fillers, and how the resulting representa-
tions are uniquely suited to simulate aspects
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Figure 4.2 . Representation of propositions in LISAese. Objects and relational roles are represented
both as patterns of activation distributed over units representing semantic features (semantic units;
small circles) and as localist units representing tokens of objects (large circles) and relational roles
(triangles). Roles are bound to fillers by localist subproposition (SP) units (rectangles), and role-filler
bindings are bound into complete propositions by localist proposition (P) units (ovals).
(a) Representation of loves (Susan, Jim). (b) Representation of knows [Jim, loves (Susan, Jim)]. When
one P takes another as an argument, the lower (argument) P serves in the place of an object unit
under the appropriate SP of the higher-level P unit [in this case, binding loves (Susan, Jim) to the SP
representing what is known].

of human perception and cognition (also see
Holyoak, Chap. 6).

LISAese is based on a hierarchy of dis-
tributed and localist codes that collectively
represent the semantic features of objects
and relational roles, and their arrangement
into complete propositions (Figure 4 .2). At
the bottom of the hierarchy, semantic units
(small circles in Figure 4 .2) represent ob-
jects and relational roles in a distributed fash-
ion. For example, Jim might be represented
by features such as human, adult, and male
(along with units representing his personal-

ity traits, etc.), and Susan might be repre-
sented as human, adult, and female (along
with units for her unique attributes). Simi-
larly, the lover and beloved roles of the loves
relation would be represented by semantic
units capturing their semantic content. At
the next level of the hierarchy, object and
predicate units (large circles and triangles in
Figure 4 .2) represent objects and relational
roles in a localist fashion, and share bidi-
rectional excitatory connections with the
corresponding semantic units. Subproposi-
tion units (SPs; rectangles in Figure 4 .2)
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represent bindings of relational roles to their
arguments [which can either be objects, as in
Figure 4 .2(a), or complete propositions, as in
Figure 4 .2(b)]. At the top of the hierarchy,
separate role-filler bindings (i.e., SPs) are
bound into a localist representation of the
proposition as a whole via excitatory connec-
tions to a single proposition (P) unit (ovals
in Figure 4 .2). Representing propositions in
this type of hierarchy reflects our assump-
tion that every level of the hierarchy must be
represented explicitly, as an entity in its own
right (see Hummel & Holyoak, 2003a). The
resulting representational system is com-
monly referred to as a role-filler binding sys-
tem (see Halford et al., 1998). Both rela-
tional roles and their fillers are represented
explicitly and relations are represented as
linked sets of role-filler bindings. Impor-
tantly, in role-filler binding systems, rela-
tional roles, their semantics, and their bind-
ings to their fillers are all made explicit in
the relational representations themselves. As
a result, role-filler binding representations
are not subject to the problems inherent
in SAA representations, discussed previ-
ously, wherein relational roles are left im-
plicit in the larger relational structures.

A complete analog (i.e., story, situation,
or event) in LISAese is represented by the
collection of P, SP, predicate, object, and se-
mantic units that code its propositional con-
tent. Within an analog, a given object, re-
lational role, or proposition is represented
by a single localist unit, regardless of how
many times it is mentioned in the analog
[e.g., Susan is represented by the same unit
in both loves (Susan, Jim) and loves (Charles,
Susan)], but a given element is represented
by separate localist units in separate analogs.
The localist units thus represent tokens of in-
dividual objects, relations, or propositions in
particular situations (i.e., analogs). A given
object or relational role will tend to be
connected to many of the same semantic
units in all the analogs in which it is men-
tioned, but there may be small differences
in the semantic representation, depending
on context (e.g., Susan might be connected
to semantics describing her profession in
an analog that refers to her work, and to

features specifying her height in an analog
about her playing basketball; see Hummel
& Holyoak, 2003a). Thus, whereas the local-
ist units represent tokens, the semantic units
represent types.

The hierarchy of units depicted in Fig-
ure 4 .2 represents propositions both in
LISA’s LTM and, when the units become ac-
tive, in its WM. In this representation, the
binding of roles to fillers is captured by the
localist (and conjunctive) SP units. When
a proposition becomes active, its role-filler
bindings are also represented dynamically,
by synchrony of firing. When a P unit be-
comes active, it excites the SPs to which it
is connected. Separate SPs inhibit one an-
other, causing them to fire out of synchrony
with one another. When an SP fires, it acti-
vates the predicate and object units beneath
it, and they activate the semantic units be-
neath themselves. On the semantic units, the
result is a collection of mutually desynchro-
nized patterns of activation, one for each role
binding. For example, the proposition loves
(Susan, Jim) would be represented by two
such patterns, one binding the semantic fea-
tures of Susan to the features of lover, and the
other binding Jim to beloved. The proposi-
tion loves (Jim, Susan) would be represented
by the very same semantic units (as well as
the same object and predicate units), only
the synchrony relations would be reversed.

The resulting representations explicitly
bind semantically rich representations of
relational roles to representations of their
fillers (at the level of semantic features, pred-
icate and object units, and SPs) and represent
complete relations as conjunctions of role-
filler bindings (at the level of P units). As
a result, they do not fall prey to the short-
comings of traditional connectionist repre-
sentations (which cannot dynamically bind
roles to their fillers), those of SAA (which
can represent neither relational roles nor
their semantic content explicitly), or those
of tensors.

Hummel, Holyoak, and their colleagues
have shown that LISAese knowledge rep-
resentations, along with the operations that
act on them, account for a very large
number of phenomena in human relational
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reasoning, including phenomena surround-
ing memory retrieval, analogy making
(Hummel & Holyoak, 1997), analogical in-
ference, and schema induction (Hummel &
Holyoak, 2003a). They provide a natural ac-
count of the limitations of human WM, on-
togenetic and phylogenetic differences be-
tween individuals and species (Hummel &
Holyoak, 1997), the relation between ef-
fortless (“reflexive”; Shastri & Ajjanagadde,
1993) and more effortful (“reflective”) forms
of reasoning (Hummel & Choplin, 2000),
and the effects of frontotemporal degener-
ation (Morrison et al., 2004 ; Waltz et al.,
1999) and natural aging (Viskontas et al.,
in press) on reasoning and memory. They
also provide a basis for understanding the
perceptual–cognitive interface (Green &
Hummel, 2004), and how specialized cog-
nitive “modules” (e.g., for reasoning about
spatial arrays of objects) can work with
the broader cognitive architecture in the
service of specific reasoning tasks (e.g.,
transitive inference; Holyoak & Hummel,
2000) (see Hummel & Holyoak, 2003b, for
a review).

Summary

An account of human mental representa-
tions – and the human cognitive architecture
more broadly – must account both for our
ability to represent the semantic content of
relational roles and their fillers and for our
ability to bind roles to their fillers dynam-
ically without altering the representation
of either.

Traditional symbolic approaches to cog-
nition capture the symbolic nature of hu-
man relational representations, but they fail
to specify the semantic content of roles and
their fillers – a failing that, as noted by the
connectionists in the 1980s, renders them
too inflexible to serve as an adequate ac-
count of human mental representations, and,
as shown by Doumas and Hummel (2004),
appears inescapable.

Traditional distributed connectionist ap-
proaches have the opposite strengths and
weaknesses: They succeed in capturing the

semantic content of the entities they repre-
sent, but fail to provide any basis for binding
those entities together into symbolic (i.e.,
relational) structures. This failure renders
them incapable of relational generalization.

Connectionist models that attempt to
achieve symbolic competence by using ten-
sor products and other forms of conjunc-
tive coding as the sole basis for role-filler
binding find themselves in a strange world
in between the symbolic and connection-
ist approaches (i.e., on the implicit relations
continuum), neither fully able to exploit the
strengths of the connectionist approach, nor
fully able to exploit the strengths of the sym-
bolic approach.

Knowledge representations based on dy-
namic binding of distributed representations
of relational roles and their fillers (of which
LISAese is an example) – in combination
with a localist representations of roles, fillers,
role-filler bindings, and their composition
into complete propositions – can simulta-
neously capture both the symbolic nature
and semantic richness of human mental rep-
resentations. The resulting representations
are neurally plausible, semantically rich,
flexible, and meaningfully symbolic. They
provide the basis for a unified account of hu-
man memory storage and retrieval, analogi-
cal reasoning, and schema induction, includ-
ing a natural account of both the strengths,
limitations, and frailties of human rela-
tional reasoning.
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Notes

1 . Arguments (or roles) may suggest different
shades of meaning as a function of the roles
(or fillers) to which they are bound. For exam-
ple, “loves” suggests a different interpretation
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in loves (John, Mary) than it does in loves (John,
chocolate). However, such contextual varia-
tion does not imply in any general sense that
the filler (or role) itself necessarily changes its
identity as a function of the binding. For exam-
ple, our ability to appreciate that the “John”
in loves (John, Mary) is the same person as
the “John” in bites (Rover, John) demands ex-
planation in terms of John’s invariance across
the different bindings. If we assume invari-
ance of identity with binding as the general
case, then it is possible to explain contextual
shadings in meaning when they occur (Hum-
mel & Holyoak, 1997). However, if we assume
lack of invariance of identity as the general
case, then it becomes impossible to explain
how knowledge acquired about an individual
or role in one context can be connected to
knowledge about the same individual or role in
other contexts.

2 . In the most extreme version of this account,
the individual processing elements are not as-
sumed to “mean” anything at all in isolation;
rather they take their meaning only as part of a
whole distributed pattern. Some limitations of
this extreme account are discussed by Bowers
(2002) and Page (2000).

3 . For example, Falkenhainer, Forbus, and Gen-
tner’s (1989) structure matching engine
(SME), which uses SAA-based representations
to perform graph matching, cannot map loves
(Abe, Betty) onto likes (Peter, Bertha) because
loves and likes are nonidentical predicates. To
perform this mapping, SME must recast the
predicates into a common form, such as has-
affection-for (Abe, Betty) and has-affection-for
(Alex, Bertha), and then map these identical
predicates.

4 . At first blush, it might appear that adding two
vectors where one represents a relational role
and the other its filler should be susceptible
to the very same problem that we faced when
adding two tensors where each represented a
role-filler binding, namely the superposition
catastrophe. It is easy to overcome this prob-
lem in the former case, however, by simply
using different sets of units to represent roles
and fillers so the network can distinguish them
when added (see Hummel & Holyoak, 2003a).
This solution might also be applied to role-
filler binding with tensors, although doing so
would require using different sets of units to
code different role-filler bindings. This solu-
tion would require allocating separate tensors
to separate role-filler bindings, thus adding a

further layer of conjunctive coding and further
violating role-filler independence.
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