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I.  Introduction 
 

A fundamental aspect of human intelligence is the ability to represent and reason about relations.  Examples of 
relational thinking include our ability to appreciate analogies between different objects or events (Gentner, 
1983; Holyoak & Thagard, 1995), our ability to apply abstract rules in novel situations (e.g., Smith, Langston 
& Nisbett, 1992), our ability to understand and learn language (e.g., Kim, Pinker, Prince & Prasada, 1991), our 
ability to learn and use categories (Ross, 1987), and even our ability to appreciate perceptual similarities (e.g., 
Palmer, 1978; Goldstone, Medin & Gentner, 1991; Hummel, 2000a; Hummel & Stankiewicz, 1996a). 

Relational inferences and generalizations are so commonplace that it is tempting to assume that the 
psychological mechanisms underlying them are relatively simple.  But this would be a mistake.  The capacity 
to form and manipulate explicit relational (i.e., symbolic) representations appears to be a late evolutionary 
development (Robin & Holyoak, 1995), closely tied to the substantial increase in the size and complexity of 
the frontal cortex in the brains of higher primates, most notably humans (Stuss & Benson, 1987). 

A review of computational models of perception and cognition also suggests that the question of how we 
represent and reason about relations is nontrivial (see Hummel & Holyoak, 1997, 2003): Traditional symbolic 
models of cognition (e.g., Anderson, Libiere, Lovett, & Reder, 1998; Anderson, 1990; Falkenhainer, Forbus & 
Gentner, 1989) simply assume relations as a given, making no attempt to understand the origins or detailed 
nature of these representations in the neural substrate; and traditional connectionist/neural networks models 
(e.g., Edelman & Intrator, 2003;  St. John & McClelland, 1992; O’Reilly & Rudy, 2001; Riesenhuber & 
Poggio, 1999) fail to represent relations at all.  Indeed, the proponents of such models typically reject the idea 
that the human cognitive apparatus is capable of representing relations explicitly (see Hummel, 2000; Hummel 
& Holyoak, 1997, 2003, for reviews).  Comparatively few models have attempted to address the question of 
how a neural architecture can represent and process relational structures, or the related question of how early, 
non-relational representations and processes, for example in early vision, make contact with later, more 
explicitly relational/symbolic representations (e.g., as underlie reasoning; see Gasser & Colunga, 2001; 
Hummel & Biederman, 1992; Hummel & Holyoak, 1997, 2002; Shastri & Ajjenagadde, 1993; Strong & 
Whitehead, 1989). 

 
II.  Bridging the Gaps: Relating Symbols to Neurons and Cognition 

to Perception 
 

This trend reflects, in large part, a tendency for researchers to focus on their domain of interest to the exclusion 
of related domains: As a practical matter, it is simply not possible to take the entire cognitive architecture into 
account in the attempt to understand, say, reasoning or object recognition.  In the domain of reasoning, and 
higher cognition generally, this tendency often manifests itself in the starting assumption, “given that 
knowledge is represented in a symbolic format that is roughly isomorphic to propositional notation” (e.g., 
Anderson, 1990; Falkenhainer et al., 1989; Newell & Simon, 1976); rarely do such models pose the question 
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of where the proposed representations come from, or how they relate to the outputs of basic perceptual 
processes.  In the domain of visual processing the starting assumption is typically the opposite (for a review 
and critique, see Hummel, 2000).  For example, the goal of most models of object recognition is strictly 
recognition (e.g., Edelman, 1998; Edelman & Intrator, 2002, 2003; Poggio & Edelman, 1990; Tarr & Bülthoff, 
1995; Ullman & Basri, 1989).  Often, a second goal is to describe the resulting models as much as possible in 
terms of the properties of visual neurons (e.g., Edelman & Intrator, 2003; Reisenhuber & Poggio, 1999).  
Nowhere in the vast majority of these models is there any attempt to specify how the visual system might 
deliver descriptions of object shape or arrangements of objects in a scene that might be useful to later 
cognitive processes; indeed, such representations are often explicitly eschewed as unnecessary (see, e.g., 
Edelman & Intrator, 2003): It is as though once an object has been recognized, there is nothing else left to 
do (cf. Hummel, 2000; 2003). 

The result is a sharp divide between researchers who assume symbolic representations as a given, and 
researchers who assume symbolic representations are a fiction.  One seeming exception to this divide 
appears in the form of distributed connectionist models of cognition (e.g., Elman, 1990; Kruschke, 1992, 
2001; McClelland, et al., 1995; McClelland & Rumelhart, 1981) and other models that represent concepts 
as vectors of features (e.g., Nosofsky, 1987; Shiffrin, & Styvers,1997).  To the extent that (a) such vectors 
are reasonable approximations of symbolic representations and (b) basic perceptual processes can be 
viewed as delivering them as output, these models could serve both as an account of the interface between 
perception and cognition, and as a bridge between neural and symbolic accounts of knowledge 
representation.  And it is convenient—and tempting—to view them as such.  However, as detailed below, 
the outputs of perceptual processes are not well modeled as lists of features (i.e., (b) is false; Hummel & 
Biederman, 1992; Hummel, 2000, 2003); and even if they were, list of features are entirely inadequate as 
approximations of symbolic representations (i.e., (a) is false; Hummel & Holyoak, 1997; 2003).  It is 
therefore necessary to look elsewhere for principles that can serve as an interface between perception and 
cognition on the one hand, and between neural and symbolic accounts of mental representation on the 
other. 

This chapter reviews our recent and ongoing work toward understanding this interface.  It is organized 
as follows.  We begin by reviewing the role of relational processing in perception and higher cognition, 
with an emphasis on the implications of relational processing for mental representation and cognitive 
architecture more broadly.  Next, we consider how the visual system might deliver such representations to 
cognition.  Finally, we discuss how relational representations may be used as a basis for scene recognition 
and comprehension—a process that lies squarely at the interface of perception and cognition. 

 
III.  Relational Perception and Thinking 

 
Imagine finding yourself in need of a hammer, and discovering that your children have placed your 
hammer in the configuration illustrated in Figure 1.  Rather than simply grabbing the hammer, you would 
first remove the wine glasses from the top of the box, then lift the box out of the way, supporting the 
hammer with the other hand.  This response to the situation in Figure 1, obvious as it seems, illustrates 
several important facts about our ability to comprehend novel visual scenes. 

First, the inference that you should not simply grab the hammer depends on the ability to relate general 
knowledge (e.g., an understanding of support relations, of what happens to wine glasses that fall, etc.) to 
specific knowledge about the situation at hand.  Second, most of the relevant knowledge, both the 
background knowledge and the understanding of the situation at hand, is specifically relational: It is not 
particularly relevant that the objects involved are wine glasses, boxes and a hammer; what matters is that 
a desired object is supporting a second object that is supporting something fragile.  Third, these relations 
are delivered by the visual system: Without the ability to perceive the relations among the objects, it 
would be impossible to reason about them, or even to notice that there was anything that needed 
reasoning about.  Finally, these abilities must be generic enough to work in situations that are completely 
novel (as the scene in Figure 1 presumably is).  If the hammer were replaced by an unfamiliar widget, the 
widget’s novelty would not render the scene incomprehensible. 
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Figure 1.  Illustration of a hammer that it is best not to move. 
 

The kind of reasoning that the hammer scene invokes is both commonplace and illustrative of 
relational reasoning more generally.  Relational inferences are inferences that are constrained by the 
relational roles that objects play, rather than by the identities or features of the objects themselves: It is 
not the hammer’s identity as a hammer that prevents you from moving it, but its role as object that 
supports the object that supports the fragile objects.  The capacity to make relational inferences depends 
on the ability to represent relational roles explicitly, as entities in their own right.  In turn, doing so means 
representing those roles independently of their arguments (Hummel & Biederman, 1992; Hummel & 
Holyoak, 1997, 2003): If the representation of the supports relation varied as a function of what was 
supporting what, then there would be little or no basis for generalizing anything learned about support 
relations in one context (e.g., the context of a pillow supporting a fishbowl) to novel contexts (e.g., a 
hammer supporting a box supporting wine glasses).  It would be as though the two situations were simply 
different, with little or nothing in common. 

Representing roles and fillers independently means having one set of units (e.g., neurons) represent 
relational roles, and a separate set represent the objects that can be bound to those roles.  (The units do not 
need to be physically segregated in the network; they only need to be different units.)  By keeping the 
units separate, any learning that pertains to a relation can be instantiated as connections to and from the 
units representing the relational roles.  Since the connections refer to the roles only, whatever learning 
they embody (e.g., “if supports (x, y) and fragile (y), then must- precede (remove-from (y, x), move (x))”) 
will generalize automatically to any new fillers of those roles (Hummel & Holyoak, 1997; 2003).   

Representing relational roles independently of their fillers makes it necessary to specify which fillers 
happen to be bound to which roles at a given time—i.e., to dynamically bind roles to their fillers.  One 
way to bind roles to their fillers dynamically is to exploit synchrony of firing (e.g., Hummel & 
Biederman, 1992; Hummel & Holyoak, 1997, 2003; Shastri & Ajjenagadde, 1993; Strong & Whitehead, 
1989; von der Malsburg, 1981/1994).  The basic idea is that units representing bound roles and fillers fire 
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in synchrony with one another and out of synchrony with other role-filler bindings.  For example, to 
represent supports (box, wine-glasses), units representing supporter would fire in synchrony with units 
representing the box, while units representing supported fire in synchrony with units representing the 
wine glasses; the supporter+box set would fire out of synchrony with the supported+glasses set.  It is 
possible to imagine other dynamic binding codes.  What is critical is that the binding code, whatever it is, 
must be independent of the signal that codes a unit’s degree of certainty in the hypothesis to which it 
corresponds (e.g., its activation; Hummel & Biederman, 1992).  At present, however, synchrony is the 
only proposed dynamic binding code with neurophysiological support (see Singer & Gray, 1995, for a 
review). 

Dynamic role-filler binding is crucial for binding roles to fillers in working memory (WM), but it is 
also necessary to (a) store specific role-filler conjunctions (e.g., describing previously encountered 
relations between specific objects) in long-term memory (LTM), and (b) form localist tokens of role-filler 
conjunctions in WM.  For both these purposes, conjunctive binding by localist units—i.e., units dedicated 
to specific role-filler conjunctions—is necessary (Hummel & Holyoak, 2003; see also Hummel & 
Biederman, 1992; Page, 2000).   

In summary, representing relational (i.e., symbolic) structures in a neural architecture is not trivial, and 
requires a neural/cognitive architecture that is capable of meeting some very specific requirements.  In the 
very least, it must: (1) represent roles independently of their fillers; (2) be able to bind these 
representations together dynamically in WM; and (3) bind them conjunctively as tokens in both WM and 
LTM (see Hummel & Holyoak, 2003, for a more complete list of requirements).   

Scene comprehension is a problem at the interface of perception and cognition.  To the extent that 
scene comprehension is a case of relational reasoning, it must rest on independent representations of 
objects and their relational roles; and to the extent that it depends on the outputs of perceptual processing, 
it also depends on the kinds of objects and relations perception is capable of delivering as output.  
Together, these considerations suggest that perception delivers to cognition (minimally) a representation 
of the objects in a scene in terms of their spatial relations to one another (there is evidence that it delivers 
a great deal more, including specification, for each object, of the relations among the object’s parts; see 
Hummel, 2000).  But the perceptual system starts with a representation that does not even specify the 
identities or locations of objects, much less their relations to one another (namely, the retinal image; and 
even the representation of local contour elements and “features” in V1 and V2).  What does it take to go 
from a representation of the local features such as lines and vertices in an image to a specification of the 
objects in the scene in terms of their spatial relations to one another?  

 
IV.  From Images to Objects in Relations 

 
Deriving an explicit description of the relations among the objects in a scene from the information in an 
early visual representation of that scene (e.g., as available in visual area V1) entails solving several 
problems, some of which, such as image segmentation, still elude satisfactory solutions in the 
computational literature (which is not to say they are unsolvable; it’s just that we do not yet fully 
understand how the mind solves them; see Hummel, 2000): Starting with a representation of the locations 
of various “features” such as edges and vertices in an image, the visual system must (a) segment the 
image into discrete objects, (b) recognize those objects, (c) compute the spatial relations among those 
objects, (d) form tokens of the objects, their locations, interrelations, etc., as elaborated shortly, and (e) 
make inferences from the objects and their interrelations to likely interpretations of the meaning of the 
scene.   

These requirements are complicated by the fact that an analogous set of operations characterizes the 
recognition of individual objects (at least attended objects; Hummel, 2001; Stankiewicz et al., 1998): The 
visual system must (a) segment the object’s image into parts (e.g., geons; Biederman, 1987), (b) 
characterize those parts in terms of their abstract shape attributes, (c) calculate the spatial relations among 
the parts, and (d) match the resulting descriptions to long-term memory (Hummel & Biederman, 1992).  
Moreover, as elaborated later, objects within a scene may be organized into functional groups—groups of 



 Relational Perception and Cognition  

objects that function together in the service of a goal (such as a table and chairs in a dining room) but 
which do not typically constitute an entire scene in themselves.  That is, scenes are deeply hierarchical, 
making it necessary both to represent the various levels of the hierarchy and to relate the levels to one 
another (e.g., parts to objects, objects to functional groups, and functional groups to scenes).  In the 
following, we describe how Hummel and Biederman’s (1992) JIM model of object recognition solves 
some of these problems—and how it fails to solve others—in order to clarify the problems involved in 
mapping from an unstructured representation of a visual image (e.g., as in V1) to a structured—i.e., 
explicitly relational—representation of a visual scene. 
 
A.  IMAGE SEGMENTATION 
 
Segmenting an image means figuring out “what goes with what”: which features belong to the same 
object part, which parts belong to the same object, and which objects belong to the same functional group.  
Simple perceptual properties such as collinearity and cotermination of visual image features, many of 
which were noted by the Gestaltists, serve to inform the grouping of basic features into objects or object 
parts (e.g., geons).  JIM exploits these principles to group local image features into sets corresponding to 
geons.  Specifically, it uses them to get features of the same geon firing in synchrony with one another, 
and out of synchrony with the features of other geons. 

 The Gestaltist principles JIM uses to group image features into geons are useful but by no means 
complete (see Hummel and Biederman, 1992; Hummel & Stankiewicz, 1996b, for discussions of several 
situations in which they fail).  Many of the failures stem from the fact that Gestalt principles are all local, 
in the sense that they refer to the relations between individual (local) image elements (e.g., the collinearity 
of individual line segments) without regard for the figure to which the features belong as a whole.  
Conspicuously absent are top-down constraints based on knowledge of the various global shapes 
individual elements can form.  By contrast, all other things being equal, the human visual system seems to 
prefer perceptual groupings that result in familiar objects over those that do not (see, e.g., Peterson & 
Gibson, 1994).  For the same reason, Gestalt principles—and local grouping cues more generally—are 
poorly equipped to address the grouping of parts into objects or objects into functional groups.  One 
exception may be the local cue of connectedness, which plays a role in determining whether the visual 
system interprets separate parts as belonging to the same object (Palmer & Rock, 1994; Saiki & Hummel, 
1996, 1998a, 1998b). 
 
B.  INTERPRETATION OF VISUAL PROPERTIES 
 

Whatever the complete set of cues to perceptual grouping turns out to be, the results of perceptual 
grouping are of paramount importance.  The result of JIM’s grouping of image features into parts is that 
JIM knows which image features refer to the same part, and which refer to different parts (subject to the 
limitations of its grouping algorithm).  This knowledge is tremendously valuable because it allows the 
model to ignore details such as where individual features are located in the visual field for the purposes of 
figuring out what geon they collectively form (based on their identities) and to ignore what the features 
are for the purposes of figuring out where the geon is located in the visual field, how big it is, etc.  In 
other words, JIM’s ability to solve the binding problem at the level of image features allows it to 
selectively ignore various properties of those features in order to make inferences based on their other 
properties (Hummel & Biederman, 1992): Solving the binding problem makes it possible to treat different 
sources of information independently (see also Hummel & Holyoak, 1997, 2003). 

 The general principle is that any system that can bind information together dynamically is free to 
tear it apart—i.e., treat it independently—at will.  The ability to do so is perhaps the single most 
important difference between symbolic cognition and the cognitive capabilities of purely associationist 
systems, such as traditional connectionist systems (see Hummel & Holyoak, 2003) and view-based 
approaches to shape perception (see Hummel, 2000, 2003): Such systems are unable to bind information 
together dynamically, so they are never at liberty to tear it apart when necessary. 
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1.  The Importance of Keeping Separate Things Separate 
 
This point bears elaborating, as it is both a central theme of this chapter and important to understanding 
mental representations generally.  A local feature detector is a unit (e.g., neuron, symbol, etc.) that 
responds to a particular visual feature at a particular location in the visual field, a particular size, 
orientation, etc.  In other words, it represents a conjunction of several different visual properties.  Neurons 
in visual areas V1 and V2 are examples of local feature detectors (or, equivalently for the purposes of the 
current discussion, local filters).  It is possible to build detectors for geons, or even complete objects, 
simply by connecting geon or object units directly to collections of local feature detectors, and this is 
exactly how view- (a.k.a. “appearance-“) based models of object recognition operate: a “view” is an 
object detector that is connected directly to a set of local feature detectors.  The resulting unit can detect 
its preferred geon or object (or “fragment”; Edelman & Intrator, 2003) when the corresponding local 
features are present in the image.  But because such a unit takes its input from a specific set of local 
feature detectors, it, like the feature detectors, is only able to recognize its preferred object at a particular 
location, size and orientation in the image (with the right algorithm for matching features to stored views, 
such detectors are capable of modest generalization across rotation in depth; see e.g., Tarr & Bülthoff, 
1995).   

At the other extreme, it is possible to imagine a model that simply lists all the features in an image 
without any regard for their locations (e.g., Mel, 1997; Mel & Fiser 2000).  The advantage of this 
approach is that it permits recognition of the geon (or object) regardless of where it appears in the image.  
The limitation is that, although the model knows which features are in the image, it has no idea where 
they are relative to one another: If the features of an object are all scattered about the image but not in the 
right relations to form the object, then the model will spuriously “recognize” the object even though it is 
not present.  This problem can be alleviated somewhat by positing detectors for conjunctions of features 
in the right relations (e.g., A-connected-to-B, A-connected-to-C, etc.; Mel & Fiser, 2000).  However, this 
approach only pushes the problem back one level: Now it is possible to fool the model with an A 
connected to a B in one place, an A connected to a C in another, etc. 

The deep problem with both these approaches is that they either use all the information in the image in 
a conjunctive fashion (as in the case of view-based models), or simply discard information about feature 
location altogether (as in the feature-based approach) (see Figure 2).  A better approach is simply to 
separate the feature (“what”) information from the location (“where”) information and use each for the 
tasks to which it is relevant (see Hummel & Biederman, 1992).  There is evidence for this kind of 
separation of information at a gross level in mammalian visual systems (i.e., in the functions of the ventral 
[“what”] and dorsal [“where” or “how”] cortical visual processing streams; see, e.g., Goodale et al, 1991; 
Mishkin & Ungerleider, 1982).   

This kind of separation of “what” from “where” is also essential within the “what” stream (and 
probably within the “where/how” stream as well).  Like a feature-based model, JIM ignores the locations 
of a geon’s features’ for the purposes of inferring the shape attributes of the geon they form.  That is, it 
uses the “what”, ignoring the “where”.  But in contrast to a feature-based model, JIM is not fooled by a 
collection of unrelated geon features.  The reason is that, due to the perceptual grouping of features into 
geon-based sets, features will only fire in synchrony with one another, and therefore be interpreted as 
belonging to the same geon, if they belong to the same geon.  And while one processing stream in JIM is 
busy inferring the shape of a geon from its local features, a separate processing stream is using the 
features’ locations to infer the geon’s location, size, orientation, etc.  This metric information, which is 
represented independently of (i.e., on separate units than) the geon’s shape, is then used by routines that 
compute the relations between geons. 
 
 
 
 



 Relational Perception and Cognition  

 

Input
(e.g., V1)

Representation
Matched to
Object Memory

View-based
Approach

Feature-
listing
Approach

Structural
Description
Approach

what+where
conjunctions

what+where
conjunctions

what+where
conjunctions

what+where
conjunctions

(trash)

objects objects objects

where

what
(features)

what
(features)

where
(locations)

where
(relations)

what
(parts)

 
 

Figure 2.  Three approaches to the use of feature and location information in object recognition.  Only structural description 
models separate feature and location information while preserving both. 

 
C.  COMPUTING RELATIONS 
 
The “heavy lifting” of generating a structural description is separating the “what” from the “where”, a 
function made possible by the dynamic binding of features into parts-based sets.  Once this separation is 
accomplished, using the “what” information to compute geon shape attributes and the “where” 
information to compute relations (such as relative location, relative size and relative orientation) is 
relatively straightforward (see Hummel & Biederman, 1992; Hummel, 2001).  The latter can be 
accomplished by simple comparitor circuits composed of neural-like units.  For example, consider a 
comparitor for relative location in the vertical dimension that receives a signal indicating vertical location 
3 (i.e., input from a unit that responds whenever a geon is located at coordinate 3 on the vertical axis) at 
time t = 1, and a signal indicating vertical location 5 as input at t = 2.  These inputs indicate that whatever 
fired at time 1 is below (lower in the visual field than) whatever fired at time 2, and serve as a natural 
basis for computing that relation (e.g., by serving as inputs to a matrix of units that effectively perform 
subtraction).  The next time it gets vertical location 3 as input (say, at t = 3), the comparitor need only 
activate a unit for below (i.e., the result of the “subtraction” 3 - 5) as output; and the next time it gets 
vertical location 5 as input (at t = 4), it need only activate a unit for above as output (the result of the 
subtraction 5 - 3).  As long as the units representing the shape of the geon at location 3 are firing in 
synchrony with the representation of location 3 (which, in JIM, they will be), activating below in 
synchrony with location 3 not only specifies that the geon at location 3 is below something, but it also 
binds the representation of the relational role to the representation of the geon’s shape.  That is, the same 
simple operations both calculate the relations and, as a natural side effect, bind them to the appropriate 
geons (see Hummel & Biederman, 1992). 

Analogous operations can be used to compute the spatial relations between whole objects for the 
purposes of scene perception and comprehension.  The primary difference is that the arguments of the 
relations (and thus the inputs to the relation-computing machinery) are descriptions of complete objects 
rather than object parts. 
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D.  TOKEN FORMATION 
 
The geons and relations comprising an object fire in geon-based sets with separate geons firing out of 
synchrony with one another, so the final stages of object recognition in JIM are performed by two layers 
of units (see Figure 3).  In the first of these layers, which happens to be the 6th layer of units in JIM, units 
learn to respond in a localist fashion (i.e., with one unit per pattern) to specific geons in specific relations.  
For example, a coffee mug would be represented by two such units, one that responds to curved cylinders 
beside and smaller than other parts (the handle), and one that responds to straight vertical cylinders beside 
and larger than other parts (the body of the mug).  (Simply coding the relations as “beside” and “larger” 
or “smaller” is admittedly simplified.  In particular, specification of their connectedness relations is 
conspicuously absent.)  In the second recognition layer (JIM’s 7th layer), units integrate their inputs over 
time (i.e., in order to pool the outputs of multiple Layer 6 units, which are all firing out of synchrony with 
one another) to learn to respond to specific combinations of part-relation conjunctions—i.e., to whole 
objects.  Like the Layer 6 units, the units in Layer 7 respond to their preferred patterns in a localist 
fashion, with one unit for each object. 
 

 

Layer 6:
(part+
relation
tokens)

Layer 7:
(object tokens)

Layer 3
(shape attributes of geons)

Layer 5
(relations)

cylinder+
beside

curved-cylinder +
beside

coffee cup

 
 

Figure 3.  The upper two layers of the JIM model.  Units in Layer 6 respond to specific conjunctions of part 
attributes and relations.  Units in Layer 7 integrate their inputs over time to respond to collections of Layer 6 units, 
i.e., to complete objects. 

 
The localist nature of these representations is no accident.  In addition to making the representation 

unambiguous with regard to which part(s) and object(s) are present in the image (see Page, 2000, for a 
discussion of the utility of localist representations), the localist nature of these units also allows them to 
act as explicit tokens of (or “pointers to”) the things they represent.  As elaborated in the next section, 
tokens play an essential role in relational reasoning (Hummel & Holyoak, 2003), including scene 
comprehension. 
 
1.  A Case Study in the Importance of Tokens 
 
In the context of object recognition, the importance of tokens for specific part-relation conjunctions—and 
conjunctions of part-relations conjunctions, and conjunctions of those conjunctions—is illustrated by one 
of the most important and severe limitations of Hummel and Biederman’s 1992 version of JIM.  Recall 
that each unit in JIM’s Layer 6 represents a conjunction of (a) the shape attributes defining a single geon 
(e.g., with units for curved cross section, curved major axis and parallel sides together representing a 
curved cylinder) and (b) that geon’s relations to the other geon(s) in the object.  What is not specified by 
this representation is the other geon(s) to which the relations refer: The curved cylinder is beside and 



 Relational Perception and Cognition  

smaller than something, but what?  When an object has only two parts, as in the case of the mug, the 
resulting representation is unambiguous.  But when an object has more than two parts, the representation 
can quickly become ambiguous. 
 

(a) (b) (c)

 
 

Figure 4.  Three “totem pole” objects.  Hummel and Biederman’s (1992) JIM model of object recognition predicts that (a) 
and (b) should be more confusable than either is with (c). 
 

Consider, for example, the “totem pole” objects in Figure 4, along with the schematic depictions of 
JIM’s representation of them in its Layers 6 and 7 in Figure 5A.  To JIM, objects (a) and (b) are identical: 
They both consist of a crescent that is below something, a circle and a triangle that are both above and 
below something, and a square that is above something.  Hummel and Biederman (1992) noted that this 
limitation constitutes a novel prediction: JIM predicts that (a) and (b) ought to be more confusable with 
one another than either is with (c), in which the rectangle changes places with the circle (changing which 
relations are bound to which parts).  Logan (1994) tested and falsified this and related predictions, thereby 
falsifying Hummel & Biederman’s (1992) original version of JIM.  (see Hummel & Stankiewicz, 1996b, 
Hummel, 2001, and Stankiewicz, Hummel & Cooper, 1998, for reviews of empirical phenomena that 
reveal other limitations of the original formulation of JIM.). 

Logan’s (1994) falsification of Hummel and Biederman’s (1992) JIM suggests that the architecture of 
JIM’s Layers 6 and 7 does not adequately capture an object’s structure.  But as pointed out by Logan, 
they do not falsify its general approach to structural description, based on dynamic binding of 
independent shape attributes and relations.  Indeed, there is substantial empirical support for the general 
approach (see Hummel, 1994, 2000, 2001, Hummel & Stankiewicz, 1996a, 1996b; Kurbat, 1994; Logan, 
1994; Saiki & Hummel, 1998a, 1998b; Stankiewicz & Hummel, 2002; Stankiewicz et al., 1998).  Instead, 
Logan’s findings underscore the hierarchical nature of object shape, and the importance of representing 
each level of this hierarchy explicitly—a task for which JIM’s 6th and 7th layers are inadequate.   

To elaborate, consider the augmented version of JIM’s upper layers depicted in Figure 5B.  This 
representation codes the relations between pairs of geons: Rather than coding a geon’s relations to all 
other geons in the same unit (as in JIM’s 6th layer), units in Layer 6a code a geon’s shape attributes and its 
relations to one other geon.  Although not shown in the figure, these units may code multiple relations—
e.g., relative location, relative size, etc.—as long as all those relations refer to the same geon.  Units in 
Layer 6b code for pairs of units in Layer 6a (e.g. triangle+below and circle+above) and represent 
complete propositions expressing the relations between two (and only two) geons (e.g., above (circle, 
triangle), or above-and-smaller (circle, triangle)).  Layer 7 takes its input from Layer 6b, and responds to 
complete objects (like Layer 7 in JIM).  The resulting augmented representation, like Logan’s (1994) 
subjects but unlike the original JIM, easily distinguishes objects (a) and (b).  Importantly, its ability to do 
so stems from the fact that it forms explicit tokens for elements at every level of part-relation hierarchy. 
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Figure 5.  Structural description of objects without (A) and with (B) proper token formation.  JIM’s (Hummel & Biederman, 
1992) representations are like those in (A), but the representations in (B) are better suited to general object recognition. 

 
One final extension of the Hummel & Biederman (1992) representation is worth noting.  In the 

original JIM, the outputs of units representing a geon’s shape and relations to other geons fed directly into 
units in Layer 6 representing part-relation conjunctions (rectangles in Figures 5A and 5B).  If, instead, we 
allow the outputs of units representing aspects of a geon’s shape to feed into one set of units (circles in 
Layer 5b of Figure 6A), and aspects of its relation(s) to other geons feed into a separate set of units  
(triangles in Layer 5b of Figure 6A) before shape and relation information is combined in Layer 6a, then 
we get the situation depicted in Figure 6A: a geon’s shape is represented by one token in Layer 5b and its 
relations to one other geon are represented by a separate token. 

The resulting representation is isomorphic with the representational scheme Hummel and Holyoak’s 
(1997, 2003) LISA model uses to code propositions for relational reasoning (Figure 6B): Although Figure 
6A illustrates a hierarchy of tokens for representing structural descriptions of object shape, the very same 
hierarchy can be used to represent and reason about propositions describing any relational structure.  For 
example, Figure 6B illustrates how LISA uses this hierarchy to represent the proposition “the café sells 
coffee”.  At the bottom of the hierarchy, relational roles (e.g., seller and sold) and their arguments (café 
and coffee) are represented as patterns of activation distributed over units that code their semantic 
content.  Localist tokens for individual roles (triangles in Figure 6) share bidirectional excitatory 
connections with the semantic features of those roles, and tokens for objects (circles in Layer 5b of Figure 
6) share connections with the semantic features of those objects.  Sub-proposition (SP) units serve as 
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tokens for specific roll-filler bindings (such as the binding of café to the seller role; rectangles in Figure 
6), and share bidirectional excitatory connections with the corresponding role and filler units.  SPs are 
connected to P units, which serve as tokens for complete propositions.  Not shown in Figure 6B are units 
that code for groups of related propositions (analogous to the object units in Layer 7 of Figure 6A), which 
share excitatory connections with the corresponding P units.   The important point is that the 
representation depicted in Figure 6A—which is a straightforward extension of the representations JIM 
generates in response to an object’s image—has been shown to serve a basis for relational reasoning, and 
is thus a suitable starting point for a model of scene comprehension. 
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Figure 6.  A representational scheme for recognizing multiple objects simultaneously (A) would serve as a basis for 
constructing abstract relational descriptions of visual scenes (B). 
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V.  Toward a Model of Scene Comprehension 
 

The representational scheme illustrated in Figure 6 is a “missing link” between models of perception on 
the one hand and models of cognition on the other: Given a retinotopically-mapped representation of a 
visual scene as input, it is possible to generate the representation in Figure 6 using visual routines such as 
those embodied in JIM (both the original 1992 version, and more recent versions; Hummel & 
Stankiewicz, 1996a, 1998; Hummel, 2001); the resulting representation serves as a natural basis for 
relational reasoning (Hummel & Holyoak, 1997; 2003).  It is worthwhile to note that the construction of 
properly tokenized, abstract, structural representations of the environment is decidedly non-trivial.  A 
number of difficult obstacles are yet to be overcome in solving this problem.  However, JIM serves as an 
excellent starting point from which to address the construction of more complex and abstract structural 
descriptions.  We next consider, in a bit more detail, how a representational scheme such as the one 
depicted in Figure 6 can serve as the basis for recognizing visual scenes and reasoning about their 
properties. 

Object recognition is undoubtedly useful for scene recognition (e.g., seeing coffee makers, cash 
registers, tables and chairs suggests that one may be in a café), but it is neither necessary nor sufficient.  
Biederman (1987) demonstrated that it is possible to recognize otherwise ambiguous objects based strictly 
on their locations in a scene: In such cases, scene recognition precedes and supports object recognition, 
rather than the reverse.  That object recognition is not sufficient for scene recognition is illustrated by the 
fact that identifying a collection of objects as tables, chairs, coffee makers, etc., is not sufficient to 
distinguish a café from a café supply warehouse.  In order to distinguish a café from a café supply 
warehouse, it is necessary to understand the relations among the objects.  In addition, a number of results 
suggest that top-down influences on scene perception are substantial.  Change detection (Werner & Thies, 
2000), eye movements (Hollingworth & Henderson, 2000; Henderson, Weeks, & Hollingworth, 1999; 
Loftus & Mackworth, 1978), and object detection (Moores, Laiti, & Chelazzi, 2003) are all influenced by 
semantic knowledge about visual scenes and objects.   

Scenes, composed of objects in particular relations, are thus analogous to objects, composed of parts in 
particular relations (Biederman, 1987).  However, there is an important difference: The spatial relations 
among the parts of an object are fairly tightly constrained.  For example, the handles of various mugs may 
vary in their exact size, shape and location, but they will almost always be attached to the sides of the 
mugs’ bodies.  By contrast, the spatial relations among the objects in a scene are free to vary widely.  
What is it about the spatial relations among the objects in a scene that determines whether they form a 
café or a café supply warehouse? 

 
A.  THE FUNCTIONAL RELATIONS HYPOTHESIS 
 
One intuitive hypothesis is that functional relations, rather than specific spatial relations, are what 
distinguish one category of scenes from another: A scene is a café if and only if the objects in the scene 
are arranged in a way that supports making, buying and drinking coffee. (This hypothesis is closely 
related to Gibson’s, 1950, 1979, notion of affordances: a scene is a café if and only if it affords these 
functions.)  Although this idea is intuitive, it underscores the abstract relational nature of visual scene 
recognition.  It implies that, not only is it not good enough to be able to recognize the objects in a scene, it 
is also not good enough to know where the objects are located, or even to know where they are located 
relative to one another.  Instead, it is necessary to be able to compute, from their spatial relations, their 
functional relations.  Doing so requires knowledge of things such as goals and ways to satisfy those goals.  
It is in this sense that scene recognition is a task at the interface of perception and cognition. 

One implication of the functional relations hypothesis is that the meaning (semantics) of a scene is 
more than the sum of the semantic properties of its constituent objects: Scenes are defined by semantics 
that reflect the functional relations among their constituent objects.  In the limit, the objects themselves 
can become nearly irrelevant: Along with some basis for making coffee and collecting money, a 
collection of appropriately arranged rocks or logs could form a perfectly fine café.  Or, as illustrated by 
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Biederman (1987), an array of appropriately arranged abstract shapes can form a perfectly fine office, 
thereby disambiguating the identities of its constituent objects. 

  Another implication of the functional relations hypothesis is that functional groups—groups of 
objects in spatial relations that satisfy various functional relations—form an explicit intermediate level of 
representation between objects and complete scenes.  A single scene will typically contain multiple 
functional groups.  In the case of a café, for example, there would be groups for sitting and drinking 
coffee, groups for preparing coffee, and groups for purchasing coffee.  Different scenes may share many 
of the same functional groups.  Or example, a restaurant will share many functional groups with a café, 
and a wood shop may share many groups with a metal shop or a laboratory.  A key prediction of the 
functional relations hypothesis is that scenes and scene categories should be confusable to the extent that 
they share functional groups, even controlling for the absolute number of shared objects and spatial 
relations.  
 
1.  Functional Groups in the Recognition of Familiar Scenes 
 
Biederman (1987) proposed that scenes may be recognized on the basis of geon clusters—collections of 
abstract, coarsely-coded shapes corresponding to complete objects, but perceptually coded, at least 
initially, as simple geons, in particular relations.  For example, a brick-like shape with a roughly vertical 
slab-like shape behind it would form a geon cluster for a desk and chair. The presence of such a cluster 
could provide a useful basis for recognizing the scene as an office.   

We hypothesize that, based on the statistics of the arrangements of objects in familiar scenes, geon 
clusters are likely to correspond, not to whole scenes, but to functional groups within scenes.  For 
example, across the population of various kitchens, refrigerators are unlikely to appear in any particular 
location relative to sinks, since a refrigerator and a sink are unlikely to form a functional group.  By 
contrast, sinks, counters and dish drains do form a functional group (e.g., “dish washing station”) and are 
therefore likely to appear in regular spatial relations to one another across scenes (e.g., beside (counter, 
sink), beside (dish drain, sink) and on-top (dish drain, counter)).  If so, then experience with a few typical 
kitchens could provide ample opportunity to learn a geon cluster for the functional group “dish washing 
station”.  Similar statistical regularities would provide opportunities to learn geon clusters for functional 
groupings of cutting boards and knives, pots and stoves, etc.  Once learned, such geon clusters could 
provide a rapid route to the recognition of scenes in familiar arrangements, even before the objects within 
the clusters/groups are visually recognized (as observed by Biederman). 
 
2.  Functional Groups in Scene Comprehension and Novel Scene Recognition 
 
Geon clusters for familiar functional groups may provide a fast route for the recognition of scenes with 
objects in familiar configurations, and functional groups as a more general construct—i.e., as groups of 
objects in spatial relations that afford particular functions—may also provide a basis for scene recognition 
and comprehension even in the absence of familiar geon clusters.  An extreme example was given in 
Figure 1: The spatial relations among of the hammer, boxes and wine glasses is unlikely to activate any 
familiar geon cluster, but based on one’s knowledge of functional relations (such as support) it is 
straightforward to comprehend what the scene “means”.  A less extreme example would be a kitchen in 
which the table is adorned with beakers, test tubes, and a scale.  This scene contains an unfamiliar geon 
cluster (the table and chairs with scientific instruments) that is nonetheless interpretable as “a kitchen 
table that is (probably temporarily) being used as some kind of laboratory”.  As in the hammer and wine 
glass example, it is the functional relations among the table and the instruments, rather than the familiarity 
of the particular geon cluster, that suggests the “kitchen laboratory” interpretation. 
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B.  FROM SPATIAL RELATIONS TO FUNCTIONAL INFERENCES: THE COGNITIVE SIDE OF THE PERCEPTUAL-
COGNITIVE INTERFACE 
 
Central to the functional relations hypothesis is the idea that objects in spatial relations activate 
representations of the objects’ functional relations.  This hypothesis raises the question of how we know 
which spatial relations afford which functional relations.  Although the question of which functional 
affordances/relations are learned vs. innate is well beyond the scope of this chapter, it seems 
uncontroversial that at least some functional affordances must be learned.  For example, most people 
would probably agree that the fact that the shifter in a car affords changing the ratio of the rate of 
revolution of the engine to the rate of revolution of the wheels is most likely learned, rather than innate.   

Everyday experience provides ample opportunity to observe patterns of covariation between spatial 
relations and functional relations, so it is tempting to assume that learning to map from one to the other is 
a simple matter of learning to associate them.  And to a first approximation, this is probably correct.   
However, the learning is complicated by the fact that the “associations” in question are not simple 
associations between objects or features, but rather between abstract relations, which themselves can take 
variable arguments.  As a result traditional connectionist learning algorithms (e.g., Rumelhart et al., 1986; 
O’Reilly and Rudy, 2002) are fundamentally ill-suited to the task: These architectures cannot represent 
relational structures (see Hummel and Holyoak, 1997, 2003; Marcus, 1998), so they are unable to learn 
associations between them; a model cannot learn to associate that which it cannot represent. 

By contrast, Hummel and Holyoak’s (1997, 2003) LISA model of relational learning and reasoning 
provides an ideal platform to simulate this kind of learning.  As noted previously, LISA operates on 
representations of relations and their arguments (i.e., propositions) like those illustrated in Figure 6—
representations that, at least in the domain of spatial relations, can be generated by visual routines 
embodied in a system such as JIM.  Although LISA’s operation is too complicated to describe here in 
detail, it is sufficient to note that LISA is able to learn abstract relations among propositions (e.g., that one 
relation causes or affords another), and to use its knowledge of familiar situations—both in the form of 
specific examples, and in the form of abstract schemas or rules—to infer new facts about analogous novel 
situations.  For example, given a description of the spatial relations among some tables and chairs, e.g., as 
delivered by JIM, and given similar descriptions, along with descriptions of the functional relations 
among those objects in LTM, LISA can use its knowledge of the familiar situations to infer the (as yet 
unstated) functional relations among the tables and chairs in the new situation (see Hummel & Holyoak, 
2003). 

 
C.  OPEN QUESTIONS AND FUTURE DIRECTIONS 
 
Many problems remain to be solved before the general ideas presented here can be turned into a working 
model of scene recognition and comprehension.  We shall briefly mention only a few of the thorniest.   

Some of the most difficult problems surround the hierarchical nature of visual scenes: Scenes are 
composed of functional groups, which are composed of objects in specific relations, and objects consist of 
parts in specific relations.  The image segmentation routines described by Hummel and Biederman (1992) 
are designed to take an image of a single object and decompose that object into its constituent parts.  The 
model does not address the problem of segmenting an object from a complex background (the familiar 
figure-ground segregation problem), or the related problem of knowing which object parts in a multi-
object display belong to the same object and which belong to different objects (but see Saiki & Hummel, 
1996, 1998a, 1998b, for some progress in this direction).  A related problem is that, in a multi-object 
display, the number of separate object parts will quickly exceed the capacity of visual working memory 
(which capacity is approximately four discrete units, e.g., objects or object parts; Luck & Vogel, 1998).  
For example, a scene with four objects, each with four parts, contains 16 parts, for a total of 120 non-
redundant sets of inter-part relations.  Clearly, it is neither possible nor desirable for the visual system to 
compute all sets of pair-wise relations between all parts in an object image.   



 Relational Perception and Cognition  

In order to deal with the hierarchical nature of visual scenes, a model of scene perception will need, 
among other things, intelligent routines for directing attention between levels of the hierarchy, and for 
relating elements at one level to elements at other levels.   The representational format illustrated in 
Figure 6 is one step in the direction of specifying how elements at different levels of the visual hierarchy 
are related, but it is by no means sufficient.  Among other limitations, this representational scheme 
assumes, at least tacitly, that every object in a scene is represented in terms of its complete parts structure.  
However, to the extent that Biederman’s (1987) idea of geon clusters is correct, “objects” in a cluster may 
act more like geons (small circles in Layer 5b of Figure 6A) than like complete objects (Layer 7 of Figure 
6A).  Similarly, there is evidence that we can recognize objects in familiar views without first 
decomposing them into their parts (Stankiewicz et al., 1998; Stankiewicz & Hummel, 2002; see also 
Hummel & Stankiewicz, 1996b; Hummel, 2001).  These facts could either simplify the problem of 
representing scenes hierarchically by obviating the need to represent every part of every object explicitly, 
or they could complicate it by making it unclear at which level of the hierarchy the representation of an 
object qua element in a cluster should reside: Is such an object an “object” that should reside at Layer 7, 
or a part that should reside at Layer 5b?  It seems likely that an adequate solution to the hierarchical 
representation problem will make the latter part of this problem (“is this an object or a part?”) simply "go 
away”.  But it is difficult to know for sure until we see what that solution looks like. 

Implementing a model of scene comprehension will entail solving several other more minor problems 
as well.  And although the general framework presented here arguably raises more questions about scene 
recognition and comprehension than it answers, we are encouraged that it provides a framework for 
posing the questions at all.   

 
VI. Conclusion 

 
Scene recognition and comprehension provide an excellent platform for thinking about problems at the 
perceptual-cognitive interface, as they depend jointly on perceptual input and existing functional and 
relational knowledge.  The problem of scene comprehension—of making the connection between 
representations given by the visual system and the conceptual knowledge structures that underlie 
relational reasoning—underscores the importance of developing models of perception that can deliver 
representations that are useful to the rest of cognition on the one hand, and developing models of 
cognition whose basic representations and operations can be grounded in the outputs of perceptual 
processing on the other.  Cognitive science is still far from being able to connect a camera to a computer 
and have the computer make intelligent inferences about the objects in a scene and the actions that can be 
performed there.  Many technical and theoretical problems must be solved before we will be able to fully 
automate scene comprehension in this way.  But one of the most important and basic of those problems is 
to elucidate the nature of the perceptual-cognitive interface.  In turn, one of the most important abilities at 
the interface of perception and cognition is the ability to tear information apart—e.g., about the identities 
and locations of features, parts and objects—to put it back together as needed, and to form and manipulate 
tokens representing the resulting visual and cognitive entities and their relations. 
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