
Holyoak, K. J., & Hummel, J. E. (2000). The proper treatment of symbols in a connectionist architecture. In E.
Deitrich & A. Markman (Eds.), Cognitive dynamics: Conceptual change in humans and machines. Cambridge,
MA: MIT Press.

The Proper Treatment of Symbols in a

Connectionist Architecture

Keith J. Holyoak John E. Hummel

University of California, Los Angeles

Running head: Symbolic Connectionism

Address for proofs: Keith J. Holyoak
Dept. of Psychology
Franz Hall
UCLA
Los Angeles, CA 90095-1563

Email: holyoak@lifesci.ucla.edu

Acknowledgements

Preparation of this chapter was supported by NSF Grant SBR-9511504. Eric Dietrich, Art

Markman and Jay McClelland provided valuable comments on an earlier draft.

Physical Symbol Systems

A foundational principle of modern cognitive science is the Physical Symbol System

hypothesis, which states simply that human cognition is the product of a physical symbol system

(PSS). A symbol is a pattern that denotes something else; a symbol system is a set of symbols that

can be composed into more complex structures by a set of relations. The term “physical” conveys

that a symbol system can and must be realized in some physical way in order to create intelligence.

The physical basis may be the circuits of an electronic computer, the neural substrate of a thinking

biological organism, or in principle anything else that could implement a Turing machine-like

computing device. Classical presentations of the PSS hypothesis include Newell and Simon (1976)

and Newell (1980); more recent discussions include Newell (1990) and Vera and Simon (1993,

1994).

The PSS hypothesis, which implies that structured mental representations are central to

human intelligence, was for some time uncontroversial, accepted by most cognitive scientists as an

axiom of the field scarcely in need of either theoretical analysis or direct empirical support. In the

mid-1980s, however, the hypothesis came under sharp attack from some proponents of

connectionist models of cognition, particularly the advocates of models in the style of “parallel

distributed processing”, or PDP (Rumelhart, McClelland & the PDP Research Group, 1986; more

recently, Churchland, 1990, 1995; Elman, 1990; Elman et al., 1996; Seidenberg, 1994, 1997; and

many others; see Marcus, 1997, for a review). The representations used in such models are often

described as “subsymbolic” because the elementary units correspond to (relatively) low-level

features, over which meaningful concepts are represented in a distributed fashion. In so far as

models based on "subsymbolic" representations are actually non-symbolic, yet adequate as

accounts of human intelligence, the need for symbol systems would be eliminated; hence models of

this general class constitute "eliminative" connectionism (Pinker & Prince, 1988). Eliminative

connectionism offers a direct challenge to the PSS hypothesis, thereby transforming the latter from

an axiom of cognitive science into a controversial theoretical position, which has been vigorously

defended by Fodor and Pylyshyn (1988), Pinker and Prince (1988), and Marcus (1997), among

others.

Regardless of whether models based on distributed representations provide genuine

alternatives to physical symbol systems, it is apparent that they have attractive properties as possible

algorithmic accounts of cognition. Discrete symbols represent entities in an "all-or-none" fashion,

thereby violating the principle of least commitment (e.g., using the presence or absence of the

symbol "dog" to represent the presence or absence of a dog affords no direct basis for expressing

inconclusive evidence that there may be a dog). Discrete symbols also fail to express the semantic

content of the represented entities (e.g., the symbols "dog" and "cat" do not signify what dogs and

cats have in common and how they differ). Distributed representations overcome both these

limitations, capturing some basic properties of human perception and thinking more effectively than

do classical symbolic representations. By allowing similar inputs to elicit similar outputs,

distributed representations capture broad regularities in human inductive inference, and also endow

the system with error tolerance. They also support a variety of learning algorithms that can capture

regularities in environmental inputs, and which provide simple types of automatic generalization.

Another desirable property of connectionist architectures is that they are at least roughly

consistent with neural architectures: Both consist of discrete computing elements that communicate

in densely-connected networks. In contrast to symbols in a traditional symbolic system, which can

move around freely (e.g., from one function or role to another), nodes occupy fixed locations in

connectionist networks, much as neurons occupy relatively fixed locations in the brain. As we will

see, this difference between symbolic systems on the one hand and connectionist or neural systems

on the other is important because it implies that nodes or neurons in a network need some special

properties to bind fillers to roles or values to variables—the “binding problem” poses difficulties

for the architecture of connectionist and neural networks. More generally, connectionist models

provide a convenient language for linking cognitive phenomena to their possible neural substrates.1

But is it possible, or even desirable, for connectionist models to eliminate physical symbol

systems? This question really has two parts. The first is, can distributed connectionist models

eliminate symbols? The answer to this question hinges on a terminological issue regarding what it

takes to be a "symbol". If a symbol is narrowly defined as an atomic unit corresponding to a

concept, then feature-based models may indeed be subsymbolic. But if a symbol is defined more

broadly as a representation that designates something, then distributed representations are as

symbolic as the localist variety (see Touretzky & Pomerleau, 1994, and Vera & Simon, 1994, for a

debate that focuses on this definitional issue). We find the less restrictive definition to be more

useful, but will not consider this part of the question further. The second part of the question is

more substantive: Can distributed representations eliminate symbol systems? That is, is it possible

to model the full scope of human cognition—including reasoning, relational generalization,

language use, and complex object and scene recognition—with representations that do not allow the

systematic composition of complex structures from simpler elements?

We will argue that the answer is "no". If this answer is accepted, then it follows that the

PSS hypothesis is correct, and the ultimate aim of eliminative connectionism is unattainable.

However, the PSS hypothesis itself is an abstract description of the requirements for a cognitive

architecture, rather than a prescription for any particular architecture. The core difference between

the PSS hypothesis and the eliminative connectionist hypothesis is that the former postulates

systematic, compositional mental representations, whereas the latter rejects them; hence the

resolution of the debate hinges solely on the compositionality of human mental representations.

But the failure of eliminative connectionism (which founders on the compositionality of human

mental representations) does not obviate the potential virtues of more realistic connectionist

instantiations of the human cognitive architecture. What is required, then, is not eliminative

connectionism, but rather a proper treatment of symbols within a connectionist architecture—an

architecture that simultaneously retains the strengths of distributed representations and instantiates

the PSS hypothesis—and hence constitutes symbolic connectionism (Holyoak, 1991; Hummel &

Holyoak, 1998).

In the remainder of this chapter we will develop the case for symbolic connectionism. We

first review evidence that central aspects of cognition depend on compositional symbol systems.

We will then suggest certain requirements for a proper treatment of symbols in a connectionist

network. Finally, we will sketch an example of a connectionist architecture for reasoning and

learning that meets these requirements.

Roles and Fillers: The Necessity for Variable Binding

The best-known argument for the necessity of symbolic representations—the argument

from systematicity—was made by Fodor and Pylyshyn (1988). They observed that knowledge is

systematic in that the ability to think certain thoughts seems to imply the ability to think certain

related thoughts. For example, a person who understands the meanings of the concepts "John",

"Mary" and "loves", and can understand the proposition "John loves Mary," must surely be able to

understand the proposition "Mary loves John." Eliminative connectionist models do not ensure

such systematicity. (In fact, as elaborated shortly, they ensure the absence of truly general

systematicity.) A network of the PDP type can learn to respond in an appropriate fashion to an

input representing any particular proposition; however, there is no assurance that learning one

proposition will enable a sensible response to a systematically-related proposition (see Marcus,

1997).

Systematicity is the hallmark of a system in which complex symbols are composed in a

regular fashion from simpler ones (see Halford, Wilson & Phillips, in press). More primitive

varieties of cognition can safely rely on specialized representational systems that do not require

composition of complex symbols; instead, every significant stimulus configuration can be linked to

appropriate responses, either innately or by associative learning. Within this range, eliminative

connectionist models may well be adequate. Strong evidence for systematicity has only been found

for higher primates, most notably humans. Newell (1990) characterized the development of

compositional symbol systems as the "Great Move" of evolution, triggered by the pressure to

represent and manipulate increasingly diverse information about the physical and social

environment. For example, humans can recognize scenes in which known or novel objects enter

into varied spatial relationships. Thus the relation above (object1, object2) can be instantiated by a

triangle above a square, above (triangle, square), or the reverse, above (square, triangle). Human

scene recognition is systematic with respect to a limited set of spatial relationships, and for this

reason requires models based on composed symbols (i.e., structural descriptions; see Hummel, this

volume). Thinking and language require systematicity on a grander scale, as the pool of potential

relationships over which complex symbols can be composed is indefinitely large (e.g., loves (lover,

beloved), sells (seller, buyer, object), pretends (person (is (object1, object2)), and so on). There is

reason to think that the human ability to represent and manipulate domain-general relations is linked

to evolutionary advances in prefrontal cortex (Robin & Holyoak, 1994).

As all the above examples suggest, composability of symbols requires representations that

distinguish variables from their values, or equivalently, roles from their fillers. "John loves Mary"

is similar to "Mary loves John" in that both propositions involve the same relation and objects, but

the two differ in that the assignments of objects as fillers of roles are reversed. It is this

combination of similarity and difference between systematically related symbol structures that

eliminative connectionist models fail to capture. Lacking any capacity to explicitly bind roles to

their fillers, eliminative connectionist models must resort to various forms of conjunctive coding to

bind fillers to roles (as elaborated shortly). For example, one node (or collection of nodes) might

represent John in the agent role of the love relation (the conjunction John + lover), with a

completely separate node (or pattern) representing John in the patient role (John + beloved). As a

consequence, such models do not preserve object identities across relational contexts. This

problem, already apparent with simple relational structures, becomes even more pernicious as the

complexity of composed symbol structures increases. Eliminative connectionist models have only

one basic resource for representing propositions: a fixed-length vector of units. This fixed vector

thus becomes the procrustean bed into which all symbols must be force-fit. Because symbol

structures can be of varying size and complexity, there is no way to guarantee that a given symbol

will be represented on the same (or even overlapping) set of units in two different structures. Thus,

the units that code "Mary" in "John loves Mary" may not overlap with those that code "Mary" in

"Mary loves John", far less with those that code "Mary" in "John believes that Peter's anger toward

Mary caused him to write her a strongly-worded letter."2

The inadequacies of eliminative connectionist models are especially apparent in reasoning

tasks that require placing roles and fillers into correspondence (Barnden, 1994). Consider a simple

inference rule, "If person1 loves person2 and person2 loves person3, then person1 is jealous of

person3." We can readily recognize a match between the antecedent ("if") portion of the rule and

the propositions, "John loves Mary" and "Mary loves George." The resulting inference, "John is

jealous of George", requires carrying over the correspondences established for the "if" portion

(John --> person1, George --> person3) to the "then" portion, and using them to create the

structurally appropriate inference (and not, for example, "George is jealous of John"). Such

structural inferences require more than detecting some global similarity between the specific

propositions and the "if" portion of the rule. The global similarity between the propositions and the

antecedent of the rule is (at best) enough to suggest that someone is likely to be jealous of someone

else; it is not adequate to indicate who will be jealous of whom. Drawing this specific inference

requires establishing, maintaining and using a set of specific correspondences between roles and

fillers (i.e., a set of variable bindings). No model that lacks the capacity to preserve object identities

across roles could make systematic inferences of this type.

These problems are not limited to reasoning based on established general rules with explicit

abstract variables, such as "person1". Fundamentally the same issues arise in reasoning by analogy

to specific cases. Suppose the reasoner lacked the "jealousy rule", but had encountered a specific

situation, "Alice loved Sam, and Sam loved Betty, so Alice was jealous of Betty." Now the reasoner

learns that John loves Mary and Mary loves George. Analogical mapping (e.g., Falkenhainer,

Forbus & Gentner, 1989; Holyoak & Thagard, 1989) can readily establish the correspondences

John --> Alice, Mary --> Sam, and George --> Betty. When these correspondences are passed to

an inference engine capable of "copying with substitution" (Falkenhainer et al., 1989; Holyoak,

Novick & Melz, 1994) from the source to the target analog, the conjecture "John is jealous of

George" can be inferred. Moreover, once the target is extended by this inference, the full set of

correspondences between the two analogs provides the basic ingredients for forming a new

relational generalization. If the reasoner can take the structured intersection between the two

analogs, keeping the commonalities while dropping the differences (i.e., generalizing over John the

man and Alice the woman to construct a "person" variable), then the result will be the "jealousy"

rule. As has often been argued (Gick & Holyoak, 1983; Ross & Kennedy, 1990), analogical

mapping sets the stage for relational generalization, which can yield abstract rules and schemas.

But none of this is possible for models that lack the capacity to represent roles, fillers, and the

bindings between them.

As the above examples illustrate, both rule-based and analogical inferences depend on the

capacity to detect and exploit linking relationships between role assignments (or mappings). In the

rule-based example, the binding John --> person1 links the "if" portion of the rule to the "then"

portion; in the analogical example, the mapping John --> Alice links the initial mapping to the

eventual inference. Marcus (1997, this volume) has shown that eliminative connectionist models,

lacking the capacity for variable binding, are incapable of learning generalizations based on such

linking relationships. Instead, such models are inherently limited to learning the specific

instantiations of linkages that hold for the set of examples on which they are trained. Although an

eliminative connectionist model can then make "inferences" on which it has been directly trained

(i.e., the model will remember particular associations that have been strengthened by learning), the

acquired knowledge may not generalize at all to novel instantiations of the linking relationships

based on cases that lie outside of the training set (also see Phillips & Halford, 1997).

These limitations can be illustrated by the performance of a particularly sophisticated

example of an eliminative model, the Story Gestalt model of story comprehension developed by St.

John (1992; St. John & McClelland, 1990). In one computational experiment (St. John, 1992,

Simulation 1), the Story Gestalt model was first trained with 1,000,000 short texts consisting of

propositions based on 136 different constituent concepts. Each story instantiated a script such as

"<person> decided to go to <destination>; <person> drove <vehicle> to <destination>" (e.g., "John

decided to go to a restaurant; John drove a jeep to the restaurant"; "Harry decided to go to the

beach; Harry drove a Mercedes to the beach"). After learning a network of associative connections

based on the 1,000,000 examples, the generalization ability of the model was tested by presenting it

with a text containing a new proposition, such as "George decided to go to the airport," and having

the model attempt to complete the "driving" script. St. John reports that when given a new

proposition about deciding to go to the airport, the model would typically activate the restaurant or

the beach (i.e., the destinations in specific prior examples) as the destination, rather than making the

contextually appropriate inference that the person would drive to the airport. This type of error

(which would appear quite unnatural in human text comprehension) results from the model's lack of

a capacity to learn generalized linking relationships (e.g., that if a person wants to go somewhere,

that place will be the person's destination). As St. John noted, "Developing a representation to

handle role binding proved to be difficult for the model" (1992, p. 294).

A particularly simple example of a linking relationship that reveals such generalization

failures is the identity relation. Holyoak and Thagard (1995) have argued that recognition of

identity or sameness of one object to another is the most basic form of systematic analogical

reasoning. The concept of identity appears to be within the cognitive capacity of both humans

(including young children) and other primates. Both monkeys and chimpanzees are able to first

learn to solve match-to-sample problems (e.g., picking a target object that is identical to a sample

object), and then to transfer successfully to problems based on novel objects (e.g., D’Amato,

Salmon, Lukas & Tomie, 1986; Oden, Thompson & Premack, 1988). The ability to transfer to new

objects suggests that these primates can recognize and respond to the identity relation in a way that

goes beyond the training examples.

Marcus (1977) has analysed the limitations of eliminative connectionist models in acquiring

a function based on the identity relation. Suppose, for example, that a human reasoner was trained

to respond with "1" to "1", "2" to "2", and "3" to "3". Even with just these three examples, the

human is almost certain to respond to "4" with "4", without any direct feedback that this is the

correct output for the new case. In contrast, an eliminative connectionist model (e.g., a feed-forward

or recurrent network trained by back-propagation3) will be unable to make this obvious

generalization. Such a model will have learned the specific input-output relations on which it was

trained; but lacking the capacity to represent variables, generalization outside the training set is

impossible. In other words, the model will simply have learned to associate "1" with ""1", "2" with

"2" and "3" with "3". A human, by contrast, will have learned to associate input (number) with

output (number), for any number; doing so requires the capacity to bind any new number (whether

it was in the training space or not) to the variable number. Indeed, most people are willing to

generalize even beyond the world of numbers. We leave it to the reader to give the appropriate

outputs in response to the following inputs: "A"; "B"; "flower"; "My ability to generate these

responses indicates that I am binding values to variables."

The power of human reasoning and learning, then, is dependent on the capacity to represent

roles and bind them to fillers. This is precisely the same capacity that permits composition of

complex symbols from simpler ones. The human mind is the product of a physical symbol system;

hence any model that succeeds in eliminating symbol systems will ipso facto have succeeded in

eliminating itself from contention as a model of the human cognitive architecture.

Three Requirements for a Symbolic-Connectionist Architecture

As we noted earlier, establishing the validity of the PSS hypothesis places broad constraints

on the nature of the human cognitive architecture, but does not suffice to identify any specific

architecture as psychologically real. Ultimately, the empirically correct model of the human

cognitive architecture, as a physical symbol system, will need to specify the neural code for thought.

A long road remains ahead before this goal is attained, as little is yet known about the detailed

neural substrate for propositional representation. Indeed, it appears in retrospect that the attraction

of eliminative connectionism was in part due to premature and overly-restrictive presumptions about

"neural plausibility", according to which symbol systems (narrowly identified with specific

"symbolic" architectures in the cognitive-science literature) were viewed as inherently neurally

implausible. The unknown often seems implausible. But as Sherlock Holmes observed, once we

have eliminated the impossible, what remains, however implausible, must be the truth. The human

brain supports symbol systems; rather than pretending otherwise, we need to investigate how it does

so.

There is nothing in the general notion of neural networks that precludes variable binding

and composition of symbol structures. Indeed, many researchers in the connectionist tradition have

seriously considered the question of how symbol systems could be embodied in a neural network

(e.g., Feldman & Ballard, 1982; Hinton, 1990; Hummel & Holyoak, 1997; Plate, 1991; Pollack,

1990; Shastri & Ajjanagadde, 1993; Smolensky, 1990; Touretzky & Hinton, 1988). Given that the

PSS hypothesis is accepted, and that the brain is apparently a neural network (of some sort), the

search for the human cognitive architecture leads in the direction of symbolic connectionism

(Holyoak, 1991).

It is not our purpose here to describe and evaluate in detail the many proposed symbolic

connectionist models. Some models perform rule-based inferences (e.g., Shastri & Ajjanagadde,

1993) and a few perform analogical mapping (e.g., Halford et al., 1994), but only our own model

(Hummel & Holyoak, 1997) performs a wide range of the types of structured comparisons typical

of human symbol processing. Here we will state three apparent requirements for an adequate

model of the human cognitive architecture that have motivated our own theoretical tack (Hummel &

Biederman, 1990, 1992; Hummel & Holyoak, 1993, 1996, 1997, 1998; in press; Hummel &

Stankiewicz, 1996), and that highlight limitations of alternative approaches (see also Hummel &

Holyoak, 1998). Each of these requirements is motivated by a mix of computational considerations

and empirical evidence about human cognition.

1) Independent, dynamic variable binding. The cognitive architecture must be a symbol

system: It must enable structured comparisons between complex symbol structures, allowing the

computation of systematic role-filler bindings, analogical mappings, and mapping of universal

functions (see Holyoak & Thagard, 1995). This implies that it must provide mechanisms for the

composition of symbol structures, and therefore, variable binding. A variable binding espresses a

role-filler or variable-value conjunction, and has two essential properties.

1.1) Dynamic binding. A variable binding is dynamic in the sense that it can be created and

destroyed on the fly: John can be bound to the agent role of love (x y) on one occasion and to some

other role on another occasion.

1.2) Independent binding. The binding must be independent of the entities it binds.

Binding is something a symbol system does to elemental units such as roles and fillers; it is not an

intrinsic property of the units themselves, and it does not change the identities of those elements.

For example, a propositional representation uses list position to express role-filler bindings: John is

bound to the agent role of loves (x y) by placing it in the first slot of that predicate. This is a "true"

variable binding because list position is external to (i.e., independent of) the elements themselves, so

neither John nor loves (x y) changes as a result of the binding. This independence is important

because it allows the representation of John in the context of "John loves Mary" to overlap in a

perspicuous manner with the representation of John in "Mary believes that Susan's anger toward

John caused her to write him a strongly-worded letter." The independence of binding and unit

identity in human cognition is supported by the fact that people can effectively use constituents as

retrieval cues to access larger structures stored in memory (e.g., Lesgold, 1972; Wanner, 1968). As

discussed later, it is also supported by our ability to generalize rules universally.

It is important to distinguish independent binding from conjunctive coding, the dominant

approach to binding in the connectionist literature. Conjunctive coding uses separate units (or

patterns of activation) to represent separate bindings. For example, to represent loves (John Mary),

a conjunctive code would designate one unit or pattern, A, to represent the binding of John to the

lover role, and a separate unit or pattern, B, to bind Mary to the beloved role; loves (Mary John)

would be represented by two more patterns, C binding Mary to lover, and D binding John to

beloved. Critically, A, B, C and D must differ from one another in order to bind objects to their

roles unambiguously. As a result, John bound to lover (unit A) differs from John bound to beloved

(unit D). Conjunctive coding is similar to variable binding in that it represents role-filler (or

variable-value) conjunctions. It is also similar to variable binding in that it can be dynamic: It is

possible to create and destroy conjunctive codes on the fly, as in the case of tensor product

representations of binding (see Halford et al., 1994). But it differs from true variable binding

because it carries binding information in the units themselves, rather than representing it

independently of those units (i.e., conjunctive coding fails Requirement 1.2): A unit that represents

the conjunction John+lover is simply a symbol for that conjunction; it does not explicitly bind the

symbol John to the role lover. As a result, conjunctive codes do not have the expressive power of

symbolic representations based on independent dynamic variable binding (see also Hummel &

Biederman, 1992).

2) Static binding in long-term memory. Although independent dynamic variable binding is a

necessary prerequisite for symbolic representation, a cognitive architecture must also be able to

establish static bindings—for example, by conjunctive coding—in order to code facts and rules in

long-term memory (Hummel & Holyoak, 1993, 1997; Shastri, 1997). A code for independent

dynamic binding based on temporal patterns (e.g., binding by synchrony of firing, as discussed

shortly) is necessarily transient (hence naturally associated with working memory), and therefore

must be supplemented by a static representation that stores bindings over extended periods of time.

The static form of the binding must be capable of responding to the corresponding dynamic form

(or a similar structure) when the latter enters working memory (recognition), and it must be able to

reinstate the independent dynamic form when the structure (e.g., proposition) is called back into

working memory (recall) (Hummel & Holyoak, 1997).

It is interesting to consider whether something analogous to the distinction between

dynamic and static binding arises in a traditional symbolic representation. For example, does the

symbolic representation of a proposition on the hard drive of a computer differ—in a way that is

analogous to the dynamic/static distinction—from the representation of that proposition in the

computer's random-access memory? Although these representations certainly differ in some

respects (for example, the latter is represented as a set of electronic currents in the registers that

comprise the computer's memory, whereas the former is a pattern of magnetic states on the

computer's disk), it is unclear whether such differences map onto the dynamic/static distinction that

arises for connectionist representations of symbolic structures. If not, then this would imply that

Requirement 2 is unique to symbolic connectionist systems.

3) Distributed representations of propositional content. Finally, these representations and

operations must be sufficiently robust to tolerate partial matches and imperfect correspondences.

This capability is essential to rule-based and analogical inference, as well as relational

generalization. Therefore, concepts must have distributed representations of their meanings in order

to provide simple mechanisms for error tolerance and similarity-based retrieval. In other words,

symbols must be coded by distributed patterns, rather than atomic elements. Requiring that

symbols have distributed representations implies acceptance of the broader definition of "symbol"

advocated by Vera and Simon (1994).

Numerous connectionist models have been proposed that satisfy Requirements 2 (static

binding for long-term storage) and 3 (distributed representations). However, localist connectionist

models (e.g., Feldman & Ballard, 1982; Shastri & Ajjanagadde, 1993) lack the benefits of

distributed representations (see Hummel & Holyoak, 1993), as do traditional symbolic models

(e.g., Anderson's, 1993, ACT-R and its precursors; Rosenbloom et al.’s, 1991, SOAR). Most

distributed models do not satisfy Requirement 1.2 (independent binding), in that the representation

of a symbol in isolation (or as a constituent in one symbol structure) may have no overlap with the

representation of the same symbol as a constituent in some other symbol structure. The models

that exhibit this limitation include all eliminative models, as well as models based on tensor products

(Smolensky, 1990) and their relatives, such as holographic reduced representations (HRR; Plate,

1991) and recursive autoassociative memories (the RAAM model of Pollack, 1990). This failure to

satisfy Requirement 1.2—that is, to represent roles and fillers independently of their bindings—is

the direct consequence of relying solely on conjunctive bindings.

The Problem with Tensor Products for Variable Binding

The fact that models based solely on static bindings fail to represent roles and fillers

independently of their bindings has generally been overlooked, so we will sketch the reason for the

problem (see Hummel & Holyoak, 1998, for a more complete mathematical proof). To a first

approximation, tensor products and their relatives seem adequate as a solution to the variable

binding problem (Requirement 1). However, inasmuch as satisfying Requirement 1 entails

satisfying Requirement 1.2 (independent binding), tensor-based approaches are inadequate as a

general solution to the binding problem. The limitations of tensor-based approaches—and the

importance of Requirement 1.2—are important but relatively subtle, and so warrant detailed

consideration.

A tensor product is an outer product of two or more vectors. For example, in the case of a

tensor, ab, formed from vectors a and b, the ijth element of ab is simply the product of the ith

element of a with the jth element of b (see Figure 1):

abij = aibj. (1)

Tensors can be formed from any number of vectors in this way. For instance, a tensor can

be formed from three vectors by setting the ijkth element of the tensor to the product of the ith

element of the first vector, the jth element of the second, and the kth element of the third (see Figure

2). Smolensky (1990), Halford et al. (1994) and others have shown that tensor products can be

used to bind variables to values, or fillers to roles. For example, as illustrated in Figure 2, it is

possible to represent the proposition loves (John Mary) with a three-dimensional tensor, abc, in

which one vector (a) codes the predicate (loves), the second vector (b) codes the filler of the agent

role (John), and the third vector (c) codes the filler of the patient role (Mary). Switching the roles to

represent loves (Mary John) changes the assignment of John and Mary to role slots, and thereby

changes the tensor product. If loves (John Mary) is represented by abc, then loves (Mary John)

would be represented by acb (compare Figures 2a and 2b).

Figures 1 and 2 about here

A tensor product is analogous to a weight matrix between the simple vectors from which it

is generated (the product rule for generating the tensor is precisely a Hebbian learning rule;

Smolensky, 1990). As a result, it can be used to answer "questions" about the bindings of roles to

fillers. For example, consider the tensor representation of "John runs" in Figure 1a. Imagine

activating the tensor and the vector for "run", leaving the vector where John would be represented

inactive. If the vector for "run" is treated as an input and the tensor is treated as a weight matrix,

then the network will activate John on the argument vector, effectively answering "John" to the

question "who is running?". In this sense, the tensor binds the argument John to the slot of the

predicate run (see Halford et al., 1994; Smolensky, 1990).

However, tensor products do not adequately model role binding in human mental

representation. Although a tensor can be used to generate one element of a binding given another

element as a cue (as in the above example), the tensor itself does not explicitly represent those

elements and their bindings. As noted previously, symbols in a symbol system are free to change

bindings without changing their identities. That is, the identity of a symbol is invariant with

whatever role bindings it happens to be participating in at any given time.

The tensor representation of a variable binding is not invariant in this way. Rather, the

representation of a filler (or role) in a tensor changes as a function of the role (or filler) to which it

happens to be bound. For example, consider the hypothetical tensor representations of run (John)

in Figure 1a, and walk (John) in Figure 1b. The representation of run (x) is similar but not identical

to the representation of walk (x), so the tensor for run (John) is similar but not identical to the

tensor for walk (John). Predicates that do not overlap at all produce tensors that do not overlap.

For example, the representation of eat (John) in Figure 1c does not overlap at all with the

representation of run (John) in Figure 1a. The tensor thus captures the binding of John to these

various roles, but it fails to capture the fact that John remains the same entity in each role. This

point is somewhat subtle because we (the modeler or the reader of a modeling paper) know that

John is the same in both cases; and looking at the graphical representation of the tensor, we can

"see" John in both cases—the fact that John is the argument in both cases is the reason why the

first, third and fifth units (but not the second, fourth and sixth) are active within active columns of

the tensor.

But although we know John is "in there", the tensor itself does not. To demonstrate this

limitation more formally, let us define the similarity of two vectors, a and b, in terms of the cosine

of the angle between them:

cos(

(2)

where ||x|| is the length of vector x, and a.b is the inner product (or "dot product"):

a.b =

(3)

The cosine is a measure of the similarity between two vectors. It is at a maximum (1.0) when the

vectors are identical (i.e., when they point in the same direction, regardless of their lengths), zero

when the vectors are unrelated (i.e., orthogonal), and at a minimum (-1.0) when the vectors are

opposites (i.e., with positive values in one corresponding to negative values in the other) (see

Jordan, 1986). The cosine of the angle between any two tensors, ab and a'b' (i.e., their similarity),

scales with the product of the similarities of the vectors from which they were created (Hummel &

Holyoak, 1998). For a tensor created from two vectors, a and b:

cos(

. (4)

The cosine of the angle between two tensors goes to zero when either of the more basic similarities

(cos(a,a') or cos(b,b')) is zero, and goes negative if either of the more basic similarities is negative.

In a tensor representation, binding the same object to non-overlapping roles results in non-

overlapping tensors.

It is tempting to reply that this is not a problem because the tensor really only needs to

express binding information: The responsibility for expressing similarity lies, not with the tensor,

but with the simple vectors from which the tensor is generated. According to this reply, the

preceding analysis actually reveals a strength of tensor-based representations because it shows that

the tensor can, in principle, express binding information unambiguously.

But this reply fails for two reasons. The first is that tensors describing bindings of similar

roles to similar fillers will in fact be similar to one another (Equation 4). Thus, even if we wished to

grant that it is not the tensor's responsibility to carry similarity information, the mathematics ensures

that it is inevitably the tensor's burden. This problem is most extreme when the individual vectors

(a, a', b, and b') are maximally dissimilar. If cos(a,a') = -1 (i.e., a and a' are opposites), and

cos(b,b') = -1, then cos(ab,a'b') will be positive 1.0 (see Eq. 4): In this case, the dot products are

maximimally similar precisely because their constituent roles and fillers are maximally dissimilar!

A second and more serious problem is that even the simple vectors from which the tensor is

constructed are not invariant across bindings, so it does not help to assign the "responsibility" for

similarity to them. Consider a predicate, such as loves (x y), that takes more than one argument

(Figure 2). Bound to the agent role of such a relation, an object is represented in one vector space

(i.e., collection of units); but bound to the patient role, the same object is represented in a completely

different vector space. For example, as the agent of loves (x y), John is represented on the "vertical"

units (Figure 2a); but as the patient, John is represented on the "horizontal" units (Figure 2b). The

representation of John in one role does not overlap at all with the representation of John in the

other, even on the simple vectors.

The problems with tensor-based binding are compounded in schemes based on

"compressed" tensors (e.g., Plate, 1991; Pollack, 1990). For example, in a holographic reduced

representation (Plate, 1991), a tensor is compressed (by summing over reverse diagonals) into a

vector whose dimensionality is given by the diagonal of the original tensor. Because the HRR is

derived from a tensor, it inherits the binding-identity tradeoff of the tensor; and because the

dimensionality of the HRR is lower than the dimensionality of the tensor, the HRR encounters the

additional problem that it underconstrains the tensor. That is, for any given HRR, there are multiple

tensors that could in principle have produced it. The recovery of the tensor—that is, the recovery of

the binding—is ill-posed in an HRR. The same problems arise in other schemes for compressing

tensors, including circular convolutions and Recursive Autoassociative Memories (RAAMs;

Pollack, 1990).

Distributing a Symbol System Over Space and Time

The problems with the tensor approach to binding stem from the fact that tensors are a

brand of conjunctive coding: Each unit in a tensor represents a role-filler conjunction (see Hummel

& Biederman, 1992). As a result, the representation of a role or filler is fundamentally in conflict

with the representation of role-filler bindings (Hummel & Holyoak, 1993): To the extent that the

tensor preserves one, it must sacrifice the other (Equation 4).

To satisfy Requirement 1.2 (independent binding), a representational system needs a second

degree of freedom—independent of the units' identities and their activations—to represent binding

information: Units need a "tag" to express binding (i.e., such that units in the same group have the

same value on their "tags"). The tag must be dynamic, so that units representing roles can be

rapidly but temporarily bound to units representing the fillers of those roles. Recall that units in a

connectionist network (like neurons) are not free to "move around", so list position (the binding tag

used in propositional representations) is not available. But in principle, many possible tagging

systems are conceivable. For example, units that are bound together could be spray-painted with a

shared color; Mozer et al. (1992) describe a network that uses imaginary numbers as a binding tag.

At present, however, the only proposed basis for tagging that has any apparent neural plausibility is

based on the use of time. In particular, it has been proposed that units fire in synchrony with one

another when they are bound together, and out of synchrony when they are not (Milner, 1974; von

der Malsburg, 1981, 1985; see Gray, 1994, for a review). For example, to represent loves (John

Mary), units representing John would fire in synchrony with units for "lover", while units for Mary

fire in synchrony with units for "beloved" (the John+lover set must fire out of synchrony with the

Mary+beloved set); loves (Mary John) would be represented by the very same units, but the units

for Mary would fire in synchrony with the units for lover while the units for John fire in synchrony

with the units for beloved (Hummel & Holyoak, 1992).

There is some neurophysiological evidence for binding by synchrony in visual perception

(e.g., in striate cortex; Eckhorn et al., 1988; Gray & Singer, 1989; König & Engel, 1995) and in

higher-level processing dependent on frontal cortex (Desmed & Tomberg, 1994; Vaadia et al.,

1995). Numerous connectionist models use synchrony for binding. This mechanism has been

applied in models of perceptual grouping (e.g., Eckhorn, Reitboeck, Arndt, & Dicke, 1990; von der

Malsburg & Buhmann, 1992), object recognition (Hummel & Biederman, 1992; Hummel & Saiki,

1993; Hummel & Stankiewicz, 1996, in press), rule-based reasoning (Love, 1997; Shastri &

Ajjanaggade, 1993), episodic storage in the hippocampal memory system (Shastri, 1997), and

analogical reasoning (Hummel & Holyoak, 1992, 1996, 1997, in press).

Similarity in Dynamic Binding

Equation 4 characterizes how the similarity of different tensor products scales with the

similarity of the simple vectors from which they are composed. It is possible to perform the same

analysis on synchrony-based representations of binding, as illustrated in Figure 3. In synchrony-

based models, predicate roles and fillers occupy different regions of the same vector space, and—

more importantly—a given role or filler always occupies the same part of the space (i.e., activates

the same units) regardless of whatever else is bound to it. (Geometrically, this is what it means for

role and filler identity to be invariant with binding.) Binding by synchrony corresponds to

activating two or more vectors at the same time (one for the role and one for the filler);

mathematically, binding by synchrony is vector addition (see Figure 3). (By contrast, recall that

tensor-based binding is vector multiplication; Equation 1.) As a consequence, the similarity of

different bindings in a synchrony-based representation scales additively (rather than

multiplicatively) with the similarity of the simple vectors (Hummel & Holyoak, 1998):

cos(a+b,a'+b') = (a·a' + a·b' + b·a' + b·b')/||a + b|| ||a' + b'||, (5)

where a+b is the vector generated by synchronizing a with b, and a'+b' is the vector generated by

synchronizing a' with b'. If roles (a and a') and fillers (b and b') are assumed to occupy non-

overlapping regions of vector space (i.e., assumed to share no units; see Hummel & Holyoak,

1997), then a·b' and b·a' go to zero, and Equation 5 simplifies to:

cos(a+b,a'+b') = (a·a' + b·b')/||a + b|| ||a' + b'||. (6)

Multiplication (as in the tensor scheme) corresponds to logical AND, whereas addition (as

in the synchrony-based scheme) corresponds to logical OR. Tensor bindings are similar to the

extent that their roles and fillers are similar (Equation 4), whereas synchrony-based bindings are

similar to the extent that their roles or fillers (or both) are similar (Equation 6). The practical

consequence of this property is that, in a synchrony-based scheme, walk (Bill) is guaranteed to be

identical to eat (Bill) on the units representing Bill, even if walk (x) and eat (x) have nothing

whatsoever in common. Moreover, because the numerator of Eq. 6 is based on addition rather than

multiplication, negative simple dot products (i.e., where a·a' < 0 and b·b' < 0) will produce a

negative value for cos(a+b,a'+b') (rather than a positive value, as in tensor-based schemes). That is,

synchrony-based representations are similar precisely to the degree that they express similar

concepts.

Figure 3 about here

Using Synchrony to Form Symbolic Representations

It is one thing to show that synchrony-based bindings preserve the similarity structure of

the entities they bind; it is another to show that the resulting bindings constitute useful symbolic

representations. To count as symbolic, a knowledge representation must function as part of a

system that can perform symbolic computations. We have recently developed a model that uses

synchrony-based bindings to form representations that are meaningfully symbolic in this sense.

This model, LISA (Learning and Inference with Schemas and Analogies), is a model of the major

stages of analogical inference and relational generalization, namely, retrieval from long-term

memory, mapping of structures in working memory, analogical inference, and schema induction

(Hummel & Holyoak, 1996, 1997, in press; for earlier versions of the model see Hummel, Burns &

Holyoak, 1994; Hummel & Holyoak, 1992; Hummel, Melz, Thompson, & Holyoak, 1994). We

will describe LISA in only very general terms here. The details of LISA's operation as an

analogical retrieval and mapping engine can be found in Hummel and Holyoak (1997), and the

details of its operation as an inference and schema induction engine can be found in Hummel and

Holyoak (1996, 1998).

LISA represents role-filler bindings in working memory as synchronized patterns of

activation distributed over a collection of semantic units. For example, "John loves Mary" would be

represented by units for John firing in synchrony with units for the agent role of loves, while units

for Mary fire in synchrony with units for the patent role. Propositions are represented in LISA's

long-term memory by a hierarchy of structure units (see Figure 4). Predicate units (triangles in

Figure 4) bind semantic features into predicate roles, object units (circles) bind semantic features

into objects, sub-proposition (SP) units (rectangles) bind roles to their fillers, and proposition (P)

units (ovals) bind role-filler conjunctions into complete propositions. Note that all the bindings in

LISA's long-term memory are static in that they are coded conjunctively (as dictated by

Requirement 3). As such, these units do not directly represent the semantic content of a

proposition; rather, they serve only to store that content in long-term memory and respond to it

when it enters working memory (i.e., as patterns of activation on the semantic units). An analog in

LISA is represented as a collection of structure units coding the propositions in that analog.

Separate analogs consist of non-overlapping sets of structure units, but share the semantic units.

Note that structure units are created as needed, rather than pre-stored; as we will illustrate below,

they can be learned by an algorithm for unsupervised learning.

Figure 4 about here

Based on these representations, LISA performs analog retrieval and analogical mapping as a

form of guided pattern recognition. When a proposition becomes active in one analog (a driver

analog), it generates synchronized patterns of activation on the semantic units (one pattern for each

role-filler binding). In turn, these patterns activate structure units in other recipient analogs. This

process is analog retrieval: Patterns of activation generated by the driver activate (i.e., retrieve from

LTM) units in other analogs. Mapping differs from retrieval solely by the addition of modifiable

mapping connections between units of the same type in the driver and recipient analogs. During

mapping, weights on the mapping connections grow larger when the units they link are active

simultaneously and more negative when one unit is active but the other is not. These connections

permit LISA to learn the correspondences generated during retrieval. They also serve to constrain

subsequent memory access, and thus constrain subsequent mappings. By the end of a simulation

run, corresponding structure units will have large positive weights on their mapping connections,

and non-corresponding units will have strong negative weights. Using these operations, LISA

simulates a large body of findings in human analog retrieval and mapping, and accounts for some

complex asymmetries between retrieval and mapping (Hummel & Holyoak, 1997). These same

operations also form the basis of LISA's capacity for schema induction, analogy-based inference

(Hummel & Holyoak, 1996) and explicit rule-based inference. Let us consider analogy- and rule-

based inference first.

Analogical Inference and Rule Use

Imagine that we give LISA an analog (henceforth Analog1) containing the following two

propositions (Figure 5a):

P1 = input (X)

P2 = output (X),

where P1 and P2 are the names of the propositions, input (x) and output (x) are simple one-

argument predicates (e.g., let input be connected to the semantic units role and input, and let output

be connected to role and output), and X is a simple semantically-empty object (e.g., let X connect

either to the semantic unit variable, or to no semantics at all; as we shall see, it does not matter

which). Analog1 is a typical analog in LISA notation (Hummel & Holyoak, 1997), and it can also

be interpreted as a rule stating "X is input" and "X is output". That is, Analog1 is LISA-ese for the

identity function. Next let us give LISA Analog2 (Figure 5b):

P1 = input (1),

where the predicate unit input is connected to the very same semantics as input in Analog1 (but note

that the predicate input (x) is represented by separate units in Analog1 and Analog2; Figures 5a and

5b), and the object unit, 1, is connected to semantics indicating that it is a number, and that its value

is one. Critically, 1 is connected to none of the same semantics as X in Analog1, so it bears no

similarity whatsoever to that object (i.e., the variable X in the rule). As we shall see, this property

distinguishes LISA from all eliminative connectionist approaches to modeling the identity function.

Figure 5 about here

Now let us map Analog2 onto Analog1. P1 (in Analog2) is a single-place proposition, and

therefore has only one SP (namely, input+1; Figure 5b). When this SP fires, it will activate the

predicate unit input and the object unit 1, which will activate (in synchrony) their respective semantic

units (input, role, number, and 1). Although the semantics number and 1 excite nothing in

Analog1, role excites both input and output (in Analog1), and input (the semantic unit) excites input

(in Analog1). Because the predicate input (in Analog1) is receiving more bottom-up excitation than

the predicate output, input will "win" the inhibitory competition, becoming fully active and inhibiting

output to inactivity. The predicate unit input (in Analog1) will in turn excite the SP input+X, which

will excite the object X. As a consequence, X in Analog1 is now active at the same time as 1 in

Analog2, so the mapping connection between them will grow: LISA has bound the value 1 to the

variable X and stored this binding as a connection between them. Similarly, input (Analog1) will

have learned an excitatory mapping connection to input (Analog2) (since they were active at the

same time). But output (Analog1) was inactive while input (Analog2) was active, so output

(Analog1) will have learned a negative (inhibitory) mapping connection to input (Analog1).

Next let us make Analog1 the driver and Analog2 the recipient. When P1 fires in Analog1,

it will simply reinforce (i.e., strengthen) the mapping connections from input (in Analog1) to input

(in Analog2) and from X to 1. It will also strengthen—i.e., make more negative—the inhibitory

connection between output [Analog1] and input [Analog2].

However, when P2 fires, something more interesting will happen. P2 will activate the SP

output+X, activating output and X, which will activate (in synchrony) the semantics role and output.

At the same time, X will activate 1 (in Analog2) directly by way of the mapping connection between

them. Meanwhile, the semantic unit role will excite the predicate unit input (in Analog2), but output

(in Analog1) will inhibit input (in Analog2) due to the negative mapping connection between them.

In fact, although the object 1 is receiving excitatory input over its mapping connection, all the

predicates in Analog2 (all one of "them") are receiving inhibitory input over their mapping

connections, a situation that indicates that no predicates in Analog2 correspond to the currently

active predicate in Analog1. This situation serves as a cue that it is necessary to "invent" a new

predicate corresponding to whatever predicate is currently active in Analog1 (a variety of "copy with

substitution and generation"; Holyoak et al., 1994). LISA will invent a new predicate (call it

output, where the "" indicates that LISA invented it, and "output" indicates that it corresponds to

output in Analog1), and connect it to whatever semantic units (corresponding to predicates) are

currently active (in this case, output and role).

The predicate *output is now coactive (in synchrony) with the object unit 1 in Analog2. But

for the same reason input was inhibited by output, the SP input+1 (in Analog2) will be inhibited by

the SP output+X (Analog2), and P1 will be inhibited by P2. As a consequence, LISA will invent

the SP *output+1 and the P unit *P2 (in Analog2), connect them to one another, and connect

*output+1 to the predicate *output, and the object 1. (LISA knows what to connect to what on the

basis of the units' co-activity. It simply connects together all the active units.) Together, these

operations—mapping from Analog2 to Analog1, mapping back from Analog1 to Analog2, and

filling in the gaps in Analog2—cause LISA to infer the proposition P2 = output (1). That is, given

the identity function (Analog1) and the question input (1), LISA answers output (1) (i.e., "the

output of the identity function run on the input 1 is 1").

We ran LISA on exactly this problem, and on several others like it (Hummel & Holyoak,

1998). In each case, it gave the right answer as output: input (1) --> output (1), input (2) --> output

(2), input (3) --> output (3). We also ran it on the non-numerical problems input (flower) and

input (Mary). Not surprisingly, it also gave the correct responses to these problems. It is important

to emphasize that LISA was able to solve the identity problem in spite of the fact that there was no

semantic overlap whatsoever between the object (X) in the rule (i.e., Analog1) and the objects in the

problems on which it was tested (1, 2, 3, flower, and Mary). Like a human reasoner, but unlike any

eliminative connectionist model (see Marcus, 1997, this volume), LISA generalized the identity

function universally. Its ability to do so stems directly from its ability to bind values (such as 1,

flower, and Mary) to variables (such as X).

Note also that LISA would have been far less successful in solving this problem had it

represented variable-value (or role-filler) bindings with tensors (or their variants) rather than

synchrony. The ease with which LISA maps the identity function hinges on the fact that the

predicate input (x) is represented in exactly the same way regardless of what its argument happens

to be (Requirement 1.2 and Equation 6): It is the mapping of input (in Analog2) to input (in

Analog1) that binds the value (1, 2, etc.) to the variable (X) and bootstraps the solution to the

problem. Had LISA bound input (x) to its argument (the object X) using tensor products, then the

resulting tensor would depend on both the predicate (input (x)) and its argument (X), so there would

be no guarantee that the tensor representing input (X) (in Analog1) would overlap at all with the

tensor representing input (y) (where y denotes any arbitrary object) in Analog2 (recall Equation 4).

This is not to say that tensor-based models might not solve the identity function in a different way,

for example, by treating the tensor as a weight matrix, as discussed previously. But mapping the

identity function in this way is formally equivalent to the approach of the eliminative connectionist

models (inputs are represented by one vector, outputs by another, and the function is mapped by the

weights in between). As such, this version of the tensor-based approach would be subject to all the

same limitations as traditional eliminative connectionist models (discussed below; see also Marcus,

1997).

Analogy-Based Rule Induction

It might be objected that our demonstration of identity mapping in LISA—and especially

our comparison of LISA with traditional eliminative models—is misleading. After all, the

eliminative models learn to solve the identity function by example; we simply gave LISA the rule.

Granted the rule, it is no surprise that LISA solved the problem.

This objection fails for two reasons. The first is that the eliminative model could not solve

the identity function even if we gave it the rule (or more accurately, tried to give it the rule).

“Giving” an eliminative model the identity rule would be a matter of giving it N input units and N

output units, and connecting the ith input unit to the ith output unit (for all i = 1...N). In such an

arrangement, the network will simply copy to the output units whatever it is given on the input units.

Voilá—we have given the eliminative model the identity function. Or have we? Note that even this

model will not generalize universally because there is a finite number of inputs it can even represent

in the first place (given by the dimensionality, N, of the input and output vectors). That is, this

model expects—indeed, demands—its inputs and outputs to be representable in a particular feature

space, as given by N (see also Marcus, 1997, this volume). LISA, by contrast, does not care at all

how its inputs are represented. (Recall that it maps the function even though there is no semantic

overlap between X and any value bound to X.) LISA's solution to the identity function hinges

instead on the predicate input (x), so once Analog1 is established, LISA can then map the identity

function on any argument bound to input (x). Another way to put it is that we have indeed given

LISA a rule, in the true sense of a function that binds values to variables. The trouble is not that we

gave LISA the rule, but that there is no way to give the eliminative model such a rule, even if we

wanted to.

The second answer to the above objection is that, although the previous demonstration

assumes the pre-existence of the rule, LISA is quite capable of learning the rule by example.

Moreover, as we shall show, LISA can learn to generalize universally from only one or two

examples. Whereas the eliminative model requires a number of examples that scales with the

number of problems it will eventually be asked to solve, LISA can solve any problem (i.e., an

infinity of them) after just one or two examples. LISA induces the identity rule in the same way as

it induces any schema—by unsupervised learning (of the kind that allows it to "invent" structure

units, as in the previous example) plus intersection discovery (see Hummel & Holyoak, 1996,

1998).

Imagine that we give LISA the following example:

Analog1 Analog2

P1 = input (1) P1 = input (2)

P2 = output (1) P2 = output (2),

and have it map Analog1 onto Analog2 as in the previous example. The predicate unit input in

Analog1 will map to input in Analog2, output will map to output, 1 will map to 2, and the

corresponding SPs and P units will likewise map to one another. Since every structure unit in

Analog1 has a corresponding unit in Analog2, this mapping will not require LISA to invent (i.e.,

learn or infer) any new structures in Analog2.

Now let us create a third analog, Analog3, which initially contains no structure units at all.

Once P1 in Analog1 maps to P1 in Analog2, these units will excite one another directly via their

mapping connection. But Analog3 contains no units, so there is no unit to develop positive

mapping connections to P1 in Analog1 (or P1 in Analog2). That is, nothing in Analog3 maps to P1

in Analog1. Recall that this lack-of-mapping is LISA's cue to invent new structure units. In

Analog3, LISA will invent the P unit *P1, the SP *input+1, the predicate *input, and the object *1

(let us assume that Analog1 is the driver, and that the names of invented units are taken from the

driver; hence, the new object is *1 rather than *2 or *number). The principles underlying learning

in Analog3 are so far just the same as those underlying the "copy with substitution and generation"

(i.e., inference) in the previous example.

However, analogs that are learning to be schemas, such as Analog3, are subject to one

additional constraint: The object and predicate units in these analogs have a connection-level

threshold that prevents them from learning connections to any semantic units with activations below

a certain value, Θ (Hummel & Holyoak, 1996). Otherwise, these units update their connections in

the "usual" fashion (i.e., via a modified Hebbian rule; see Hummel & Holyoak, 1996). In addition,

predicate and object units in the recipient (Analog2, if Analog1 is the driver) send activation back to

the semantic units. As a result, semantic units that are connected to active units in both the driver

and the recipient will tend to have about twice as much input as semantic units that are connected to

one but not the other. For example, the semantic unit number is connected both to the object 1 (in

Analog1) and to the object 2 (in Analog2). When P1 in Analog1 maps to P1 in Analog2, number

will therefore have two sources of input. By contrast, the semantic unit 1 is connected to the object

1 in Analog1, but is not connected to anything in Analog2; and the semantic unit 2 is connected to

the object 2 in Analog2, but to nothing in Analog1. The semantic unit number thus receives about

twice as much excitatory input as either 1 or 2, and therefore becomes more active.

In combination with the threshold, Θ, on the predicate and object units in the schema

(Analog3), this feedback from recipient analogs to semantics causes Analog 3 to perform a kind of

intersection discovery. Units in Analog3 only learn connections to highly active semantic units—

that is, semantics that are common to the driver and recipient. In the case of Analog3, this means

that the object unit *1 in Analog3 will only learn a connection to the semantic unit number. *1

represents numbers generally, not just the numbers 1 and 2, from which it was induced by example.

The same process operates on the predicate unit *input in Analog3. But in this case, input in

Analog1 has all the same semantics as input in Analog2, so all their semantic units receive two

sources of input. Therefore, *input in Analog3 learns connections to all those semantic units, and

ends up connected to exactly the same units as both examples from which it was induced. Once

these operations have run on both P1 and P2 (in Analogs 1 and 2), Analog3 is the equivalent of:

P1 = input (number)

P2 = output (number).

Based on Analog3, LISA can now map the identity function for any number. And in fact,

Analog3 is prepared to generalize much more universally than that. Let Analog4 be:

P1 input (flower),

where flower is assumed to have no semantic overlap whatsoever with number in Analog3. Our

first example showed that LISA can map the identify function even when the object (1, 2, flower,

etc.) has no semantic overlap with the variable in the function (X in the previous example). Since

flower has no semantic overlap with number, mapping Analog4 onto Analog3 is just a repeat of that

first example: LISA will infer *P2 = *output (flower) in Analog4. (Hummel & Holyoak, 1998, ran

these simulations and this is exactly what it does.) Hence, after just one training example (mapping

Analog1 onto Analog2 and inducing Analog3), LISA can generalize universally. If, while Analog3

is being mapped onto Analog4, a new empty analog, Analog5, is allowed to learn a schema (rule)

from their intersection, then Analog 5 will end up being the equivalent of:

P1 = input (X)

P2 = output (X),

where X is semantically empty (it will connect to the intersection of flower and number, which is the

empty set). LISA has now induced the rule we gave it in the very first example.

Not only is LISA's rule-learning blindingly fast compared with back-propagation learning

(as used in many eliminative connectionist models), the results are also much more general. After

just one example, LISA knows how to "play the identity function game," and can play it with any

new input. The learning trials required by people—and their subsequent ability to generalize

universally—are much more on the scale of LISA than of an eliminative connectionist model, or a

model based on tensor binding. The difference between LISA and both these alternative

approaches is that LISA can bind values to variables and arguments to roles while preserving the

similarity relations among the constituent concepts. As a result, LISA is a connectionist

implementation of a symbol system that can map and learn symbolic functions (such as the identity

function). Tensor product models attempt to bind values to variables, but fall short of the mark; as a

result, their ability to generalize also falls short of the mark. Eliminative connectionist models do

not even attempt to bind values to variables, and as a result, their performance falls far from the

mark. After hundreds or thousands (or even millions) of iterations through its training set, a back-

propagation model is still just as guaranteed to fail to generalize universally as it was before training

started. Universal generalization is in principle out of reach for any model that cannot bind values

to variables, so it would not matter how long one trained the back-propagation model—it would

never truly learn the identity function (Marcus, 1997).

A more important criticism of LISA's ability to learn the identity function is that we gave it

the predicates input (X) and output (X) in the examples from which the rule was induced. The

question of how a human reasoner discovers these predicates in the first place is an important one

for which we cannot yet offer a complete answer (but see Hummel & Holyoak, in press, for

progress in this direction). However, it is safe to assume that at least for trivial problems such as

the identity function, adult reasoners come armed with predicates corresponding to input (X) (e.g.,

"This is the example on which I am being tested") and output (X) ("This is the response I am

supposed to give"). Even if we assume the existence of these predicates, it is not a trivial matter to

specify how the reasoner can use them to solve the problem. Eliminative connectionists would also

be willing to postulate concepts such as "input" and "output", but their models are nonetheless

incapable of using those concepts to perform useful work. It is this capacity that requires symbol

processing, and that the preceeding simulations are intended to demonstrate.

Why Symbolic Connectionism is Not “Mere” Implementation

Fodor and Pylyshyn (1988) observed that a connectionist model might, in principle, capture

the systematicity (compositionality) of human cognition, but that in so doing, the resulting model

would simply implement a (traditional-style) symbolic model. The “invited inference” was that

nothing is to be gained from the exercise of implementing symbol processing in a connectionist

framework. Is symbolic connectionism just a roundabout way of getting “back where we started”?

The answer is a resounding “no”. The issue of whether the mind is a physical symbol

system is a question at the level of computational theory (Marr, 1982): What function is the mind

computing? In the most abstract terms, the answer is that the mind is performing symbol

manipulation. This question and its answer are very important, as the failings of eliminative

connectionist models attest. But the answer does not tell us how the mind is doing symbol

manipulation, which is a question at Marr’s level of representation and algorithm. It is here that

symbolic connectionism represents a striking advance over traditional symbolic architectures of

cognition (e.g., Anderson, 1993; Rosenbloom et al., 1991).

One advantage of symbolic connectionism derives from an apparent weakness: It is hard to

do symbol manipulation in a connectionist architecture. This is because symbol manipulation

requires dynamic binding, and dynamic binding is difficult to perform in a connectionist

architecture (see Hummel & Stankiewicz, 1996, in press). In the case of dynamic binding by

synchrony of firing, some mechanism has to get the right units into synchrony with one another

and (what is even more difficult) keep them out of synchrony with all the other units. It takes work

to establish synchrony and (especially) asynchrony, and some process must perform this work. By

contrast, dynamic binding in a symbolic model is trivially easy: The correct bindings are simply

given. By definition, placing the symbol "John" into the first slot of the predicate loves (x y) binds

John to the agent role of that predicate. End of story. There is nothing else to say, and no other

work to do. If you then want to bind "John" to some other role, you can just do it, as many times as

you want, with as many predicates as you want, and as many other objects as you want.

In a traditional symbol architecture, bindings are free, so you can have as many as you need.

Of course, a theorist may opt to impose some limit on binding, in deference to the glaring fact that

people have limited capacity to make and break role bindings; but this will simply be an ad hoc

“add on” rather than a deep implication of the proposed symbolic architecture. It is here that the

computational weakness of symbolic connectionism becomes a psychological virtue. A model that

represents bindings with synchrony (such as LISA and related models, such as JIM; Hummel &

Biederman, 1992; Hummel & Stankiewicz, 1996), is inherently limited in the number of things it

may simultaneously have active and mutually out of synchrony with one another (although there is

no theoretical limit on the number of entities in any one synchronized group). That is, there is a

limit on the number of distinct bindings such a model may have in working memory at any one time

(Hummel & Holyoak, 1997; Shastri & Ajjanaggade, 1993). Humans, too, have limited working

memory, and limited attention. Thus Hummel and Stankiewicz (1996, in press) argue that a

primary function of visual attention is to keep the separate elements of a visual display out of

synchrony with one another. Symbolic connectionism—as an algorithmic theory of symbol

systems—provides a natural account of the fact that humans have a limited working memory

capacity. Similar symbolic-connectionist considerations predict various other limitations of human

symbolic reasoning as well (see Hummel & Holyoak, 1997). One thing to be gained by asking

how the human cognitive architecture implements symbols (rather than simply assuming that it

does, as in the traditional symbolic approach) is an understanding of some of the limitations of that

architecture.

Symbolic connectionism also explains some strengths of the human cognitive architecture

that are equally mysterious from the traditional symbolic perspective. One is the capacity to map

semantically related predicates that take different numbers of arguments, for example, mapping

taller (A B) and taller (B C) onto tallest-to-shortest (D E F). LISA can solve this mapping

(Hummel & Holyoak, 1997). Traditional symbolic models, by contrast, must enforce an inviolable

"N-ary restriction" (whereby a predicate with N arguments may only map to another predicate with

N arguments), which precludes such mappings (see Hummel & Holyoak, 1997). Other strengths

of symbolic connectionism derive from the value of distributed representations of semantic content

(see Hummel & Holyoak, 1997). The early connectionists were right about the value of distributed

representations, and symbolic connectionism is just as able to exploit those strengths as

"traditional" (eliminative) connectionism. In fact, it is better able to do so, because symbolic

connectionism embeds these representations into systematic structures. Armed with dynamic

binding, LISA can implement fast inductive learning of universal generalizations using a simple

variant of the Hebbian algorithm for unsupervised learning. As an aside, it is interesting to note that

LISA's learning by analogy is a variety of learning by example—a property that it shares with back-

propagation. It is thus more constrained than traditional algorithms for unsupervised learning (e.g.,

Kohonen, 1982; Marshall, 1995; von der Malsburg, 1973). But at the same time it is less "heavy-

handed"—and much more psychologically plausible—than the explicit error-correction algorithm

of back-propagation. In LISA, the "teacher" is just a familiar example (i.e., a source analog), not an

all-knowing external device.

A further advantage of symbolic connectionism over either traditional symbolic modeling or

eliminative connectionist modeling is that it provides a vocabulary for talking about the relationship

between truly associative, non-symbolic processes and more complex symbolic processes. In

symbolic connectionism, these are all part of the same system: Take symbolic connectionism, strip

away dynamic variable binding, and the result is simple (connectionist-style) associationism.

Finally, symbolic connectionism maintains the basic architecture of earlier connectionist

models (densely connected networks of local computing elements) while adding a more fine-

grained use of the informational capacity of time. As compared to the elements of traditional

symbolic models (lists of localist symbols, which can be constructed and modified by explicit list

operations), the elements of symbolic connectionism provide more direct links to neural

architecture, and hence set the stage for addressing questions at Marr’s (1982) implementation

level. A physical symbol system, as embodied in a human or other biological organism, is realized

in the brain. There is a neural code for thought, and symbolic connectionism—the proper treatment

of symbols—may guide us in cracking the code.

Footnotes

1. At the same time, some apparent similarities between connectionist networks and neural

networks—that nodes operate like neurons and connections operate like synapses—must be

interpreted with caution. Neural processes are complex and not yet understood. The similarity of

current connectionist models to actual neural networks lies more in their gross architectures than in

the operation of their basic elements.

2. Arguments (or roles) may suggest different shades of meaning as a function of the roles (or

fillers) to which they are bound. For example, "loves" suggests a slightly different interpretation in

loves (John Mary) than it does in loves (John chocolate). However, such contextual variation does

not imply in any general sense that the filler (or role) itself necessarily changes its identity as a

function of the binding. For example, our ability to appreciate that the "John" in loves (John Mary)

is the same person as the "John" in bite (Rover John) demands explanation in terms of John's

invariance across the different bindings. If we assume invariance of identity with binding as the

general phenomenon, then it is possible to explain contextual shadings in meaning when they occur

(Hummel & Holyoak, 1997). However, if we assume lack of invariance of identity as the general

rule, then it becomes impossible to explain how knowledge acquired about an individual in one

context can be connected to knowledge about the same individual in other contexts.

3. Although eliminative models often are based on back-propagation learning, their most basic

limitations arise not from the learning algorithm per se, but rather from their lack of explicit role-

filler representations. As we will discuss below, models of this sort are unable to represent the

knowledge necessary for true universal generalization, and hence cannot succeed in modeling

human relational generalization even if the modeler is allowed to hand-code the network.

References

Anderson, J. R. (1993). Rules of the mind. Hillsdale, NJ: Erlbaum.

Barnden, J. A. (1994). On the connectionist implementation of analogy and working memory

matching. In J. A. Barnden & K. J. Holyoak (Eds.), Advances in connectionist and neural

computation theory, Vol. 3: Analogy, metaphor, and reminding (pp. 327-374). Norwood, NJ:

Ablex.

Churchland, P. (1990). Cognitive activity in neural networks. In D. H. Osherson & E. E. Smith

(Eds.), An Invitation to Cognitive Science: Thinking (Volume 3). Cambridge MA: MIT Press.

Churchland, P. (1995). The Engine of Reason, the Seat of the Soul: A Philosophical Journey into

the Brain. Cambridge MA: MIT Press.

D’Amato, M. R., Salmon, D. P., Loukas, E., & Tomie, A. (1985). Symmetry and transitivity of

conditional relations in monkeys (Cebus apella) and pigeons (Columba livia). Journal of the

Experimental Analysis of Behavior, 44, 365-373.

Desmedt, J., & Tomberg, C. (1994). Transient phase-locking of 40 Hz electrical oscillations in

prefrontal and parietal human cortex reflects the process of conscious somatic perception.

Neuroscience Letters, 168, 126-129.

Eckhorn, R., Bauer, R., Jordan, W., Brish, M., Kruse, W. Munk, M. & Reitboeck, H.J. (1988).

Coherent oscillations: A mechanism of feature linking in the visual cortex? Multiple electrode

and correlation analysis in the cat. Biological Cybernetics, 60, 121-130.

Eckhorn, R., Reitboeck, H., Arndt, M., & Dicke, P. (1990). Feature linking via synchronization

among distributed assemblies: Simulations of results from cat visual cortex. Neural

Computation, 2, 293-307.

Elman, J. L. (1990). Finding structure in time. Cognitive Science, 14, 179-212.

Elman, J. L., Bates, E. A., Johnson, M. K., Karmiloff-Smith, A., Parisi, D., & Plunkett, K. (1996).

Rethinking innateness: A connectionist perspective on development. Cambridge, MA: MIT

Press.

Falkenhainer, B., Forbus, K. D., & Gentner, D. (1989). The structure-mapping engine: Algorithm

and examples. Artificial Intelligence, 41, 1-63.

Feldman, J. A., & Ballard, D. H. (1982). Connectionist models and their properties. Cognitive

Science, 6, 205-254.

Fodor, J. A., & Pylyshyn, Z. (1988). Connectionism and cognitive architecture: A critical analysis.

Cognition, 28, 3-71.

Gick, M. L., & Holyoak, K. J. (1983). Schema induction and analogical transfer. Cognitive

Psychology, 15, 1-38.

Gray, C. M. (1994). Synchronous oscillations in neuronal systems: Mechanisms and functions.

Journal of Computational Neuroscience, 1, 11-38.

Gray, C. M., & Singer, W. (1989). Stimulus specific neuronal oscillations in orientation columns

of cat visual cortex. Proceedings of the National Academy of Sciences, USA, 86, 1698-1702.

Halford, G. S., Wilson, W. H., Guo, J., Gayler, R. W., Wiles, J., & Stewart, J. E. M. (1994).

Connectionist implications for processing capacity limitations in analogies. In K. J. Holyoak &

J. A. Barnden (Eds.), Advances in connectionist and neural computation theory, Vol. 2:

Analogical connections (pp. 363-415). Norwood, NJ: Ablex.

Halford, G. S., Wilson, W. H., & Phillips, S. (in press). Processing capacity defined by relational

complexity: Implications for comparative, developmental, and cognitive psychology. Brain and

Behavioral Sciences.

Hinton, G. E. (Ed.) (1990). Connectionist symbol processing. Cambridge, MA: MIT Press.

Holyoak, K. J. (1991). Symbolic connectionism: Toward third-generation theories of expertise. In

K. A. Ericsson & J. Smith (Eds.), Toward a general theory of expertise: Prospects and limits

(pp. 301-335). Cambridge: Cambridge University Press.

Holyoak, K. J., Novick, L. R., & Melz, E. R. (1994). Component processes in analogical transfer:

Mapping, pattern completion, and adaptation. In K. J. Holyoak & J. A. Barnden (Eds.),

Advances in connectionist and neural computation theory, Vol. 2: Analogical connections (pp.

130-180). Norwood, NJ: Ablex.

Holyoak, K. J., & Thagard, P. (1989). Analogical mapping by constraint satisfaction. Cognitive

Science, 13, 295-355.

Holyoak, K. J., & Thagard, P. (1995). Mental leaps: Analogy in creative thought. Cambridge,

MA: MIT Press.

Hummel, J. E. (this volume). View-based theories of human object recognition: Let’s get serious.

Hummel, J. E., & Biederman, I. (1992). Dynamic binding in a neural network for shape

recognition. Psychological Review, 99, 480-517.

Hummel, J. E., Burns, B., & Holyoak, K. J. (1994). Analogical mapping by dynamic binding:

Preliminary investigations. In K. J. Holyoak & J. A. Barnden (Eds.), Advances in

connectionist and neural computation theory, Vol. 2: Analogical connections (pp. 416-445).

Norwood, NJ: Ablex.

Hummel, J. E., & Holyoak, K. J. (1992). Indirect analogical mapping. In Proceedings of the

Fourteenth Annual Conference of the Cognitive Science Society (pp. 516-521). Hillsdale, NJ:

Erlbaum.

Hummel, J. E., & Holyoak, K. J. (1993). Distributing structure over time. Behavioral and Brain

Sciences, 16, 464.

Hummel, J. E., & Holyoak, K. J. (1996). LISA: A computational model of analogical inference

and schema induction. In G. W. Cottrell (Ed.), Proceedings of the Eighteenth Annual

Conference of the Cognitive Science Society (pp. 352-357). Hillsdale, NJ: Erlbaum.

Hummel, J. E., & Holyoak, K. J. (1997). Distributed representations of structure: A theory of

analogical access and mapping. Psychological Review, 104, 427-466.

Hummel, J. E., & Holyoak, K. J. (1998). Symbolic connectionism. Manuscript in preparation,

Department of Psychology, UCLA.

Hummel, J. E., & Holyoak, K. J. (in press). From analogy to schema induction in a structure-

sensitive connectionist model. In T. Dartnall & D. Peterson (Eds.), Creativity and

computation. Cambridge, MA: MIT Press.

Hummel, J. E., Melz, E. R., Thompson, J., & Holyoak, K. J. (1994). Mapping hierarchical

structures with synchrony for binding: Preliminary investigations. In A. Ram & K. Eiselt

(Eds.), Proceedings of the Sixteenth Annual Conference of the Cognitive Science Society (pp.

433-438). Hillsdale, NJ: Erlbaum.

Hummel, J. E., & Saiki, J. (1993). Rapid unsupervised learning of object structural descriptions.

Proceedings of the Fifteenth Annual Conference of the Cognitive Science Society (pp. 569-574).

Hillsdale, NJ: Erlbaum.

Hummel, J. E., & Stankiewicz, B. J. (1996). An architecture for rapid, hierarchical structural

description. In T. Inui & J. McClelland (Eds.), Attention and performance XVI: Information

integration in perception and communication (pp. 93-121). Cambridge, MA: MIT Press.

Hummel, J. E., & Stankiewicz, B. J. (in press). Two roles for attention in shape perception: A

structural description model of visual scrutiny. Visual Cognition.

Jordan, M. I. (1986). An introduction to linear algebra in parallel distributed processing. In D. E.

Rumelhart, J. L. McClelland & the PDP Research Group, Parallel distribute processing:

Explorations in the microstructures of cognition, Vol. 1 (pp. 365-422). Cambridge, MA: MIT

Press.

Kohonen, T. (1982). Self-organized formation of topologically correct feature maps. Biological

Cybernetics, 43, 59-69.

König, P., & Engel, A. K. (1995). Correlated firing in sensory-motor systems. Current Opinion

in Neurobiology, 5, 511-519.

Lesgold, A. M. (1972). Pronominalization: A device for unifying sentences in memory. Journal of

Verbal Learning and Verbal Behavior, 11, 316-323.

Love, B.C. (1997). Asynchronous connectionist binding. Manuscript in preparation, Northwestern

University.

Marcus, G. F. (1997). Rethinking eliminative connectionism. Manuscript in preparation, New York

University.

Marcus, G. F. (this volume).

Marr, D. (1982). Vision. Freeman: San Francisco.

Marshall, J. A. (1995). Adaptive pattern recognition by self-organizing neural networks: Context,

uncertainty, multiplicity, and scale. Neural Networks, 8, (3), 335-362.

Milner, P. M. (1974). A model for visual shape recognition. Psychological Review, 81, 521-535.

Mozer, M. C., Zemel, R. S., Behrmann, M., & Williams, C. K. (1992). Learning to segment images

using dynamic feature binding. Neural Computation, 4, 650-665.

Newell, A. (1980). Physical symbol systems. Cognitive Science, 4, 135-183.

Newell, A. (1990). Unified theories of cognition. Cambridge, MA: Harvard University Press.

Newell, A., & Simon, H. A. (1976). Computer science as empirical inquiry: Symbols and search.

Communications of the ACM, 19, 113-126.

Oden, D. L., Thompson, R. K. R., & Premack, D. (1988). Spontaneous transfer of matching by

infant chimpanzees (Pan troglodytes). Animal Behavior Processes, 14, 140-145.

Phillips, S., & Halford, G. S. (1997). Systematicity: Psychological evidence with connectionist

implications. In M. G. Shafto & P. Langley (Eds.), Proceedings of the Nineteenth Conference

of the Cognitive Science Society (pp.614-619). Hillsdale, NJ: Erlbaum.

Pinker, S., & Prince, A. (1988). On language and connectionism: Analysis of a parallel distributed

processing model. Cognition, 28, 73-193.

Plate, T. (1991). Holographic reduced representations: Convolution algebra for compositional

distributed representations. In J. Mylopoulos and R. Reiter (Eds.), Proceedings of the 12th

International Joint Conference on Artificial Intelligence (pp. 30-35). San Mateo: Morgan

Kaufmann.

Pollack, J. B. (1990). Recursive distributed representations. Artificial Intelligence, 46, 77-106.

Robin, N., & Holyoak, K. J. (1994). Relational complexity and the functions of prefrontal cortex.

In M. S. Gazzaniga (Ed.), The cognitive neurosciences (pp. 987-997). Cambridge, MA: MIT

Press.

Rosenbloom, P. S., Laird, J. E., Newell, A., & McCarl, R. (1991). A preliminary analysis of the

Soar architecture as a basis for general intelligence. Artificial Intelligence, 47, 289-325.

Ross, B. H., & Kennedy, P. T. (1990). Generalizing from the use of earlier examples in problem

solving. Journal of Experimental Psychology: Learning, Memory, and Cognition, 16, 42-55.

Rumelhart, D. E., McClelland, J. L., & the PDP Research Group. Parallel distributed processing,

Vol. 1: Foundations. Canbridge, MA: MIT Press.

Seidenberg, M. S. (1994). Language and connectionism: The developing interface. Cognition, 50,

385-401.

Seidenberg, M. S. (1997). Language acquisition and use: Learning and applying probabilistic

constraints. Science, 275, 1599-1603.

Shastri, L. (1997). A model of rapid memory formation in the hippocampal system. In M. G.

Shafto & P. Langley (Eds.), Proceedings of the Nineteenth Conference of the Cognitive Science

Society (pp. 680-685). Hillsdale, NJ: Erlbaum.

Shastri, L., & Ajjanagadde, V. (1993). From simple associations to systematic reasoning:A

connectionist representation of rules, variables and dynamic bindings using temporal

synchrony. Behavioral and Brain Sciences, 16, 417-494.

Smolensky, P. (1990). Tensor product variable binding and the representation of symbolic

structures in connectionist systems. Artificial Intelligence, 46, 159-216.

St. John, M. F. (1992). The Story Gestalt: A model of knowledge-intensive processes in text

comprehension. Cognitive Science, 16, 271-302.

St. John, M. F., & McClelland, J. L. (1990). Learning and applying contextual constraints in

sentence comprehension. Artificial Intelligence, 46, 217-257.

Touretzky, D., & Hinton, G. (1988). A distributed production system. Cognitive Science, 12, 423-

466.

Touretzky, D., & Pomerleau, D. A. (1994). Reconstructing physical symbol systems. Cognitive

Science, 18, 345-353.

Vaadia, E., Haalman, I., Abeles, M., Bergman, H., Prut, Y., Slovin, H., & Aertsen, A. (1995).

Dynamics of neuronal interactions in monkey cortex in relation to behavioural events. Nature,

373, 515-518.

Vera, A. H., & Simon, H. A. (1993). Situated action: A symbolic interpretation. Cognitive Science,

17, 7-48.

Vera, A. H., & Simon, H. A. (1994). Reply to Touretzky and Pomerleau: Reconstructing physical

symbol systems. Cognitive Science, 18, 355-360.

von der Malsburg, C. (1973) Self-organization of orientation selective cells in the striate cortex.

Kybernetik, 14: 85-100.

von der Malsburg, C. (1981). The correlation theory of brain function. Internal Report 81-2,

Department of Neurobiology, Max-Planck-Institute for Biophysical Chemistry.

von der Malsburg, C. (1985). Nervous structures with dynamical links. Ber. Bunsenges. Phys.

Chem., 89, 703-710.

von der Malsburg, C., & Buhmann, J. (1992). Sensory segmentation with coupled neural

oscillators. Biological Cybernetics, 67, 233-242.

Wanner, H. E. (1968). On remembering, forgetting, and understanding sentences: A study of the

deep structure hypothesis. Ph.D. dissertation, Harvard University.

Figure Captions

Figure 1. A tensor product is an outer product of two or more vectors. (a) A tensor product

representing a binding of the object John to the single-argument predicate run (x). Black circles

indicate values of 1 (active units) and circles indicate values of 0 (inactive units). Run (x) is

represented by the vector [1,1,0,0,0,0]. John is represented by the vector [0,1,0,1,0,1]. The ijth

element of the tensor run (John) is the product of the ith element of run (x) with the jth element of

John. (b) A tensor product representing a binding of John to the predicate walk (x). The vector for

walk (x) shares active units with (but is not identical to) the vector for run (x), so the tensor for walk

(John) shares active units with (but is not identical to) the vector for run (John). (c) A tensor

product representing a binding of John to the predicate eat (x). The vector for eat (x) shares no

active units with the vector for run (x), so the tensor for eat (John) shares no active units with the

vector for run (John).

Figure 2. (a) A tensor representation of the proposition love (John Mary). Black circles indicate

values of 1 (active units) and while circles indicate values of 0 (inactive units). (b) A tensor

representation of love (Mary John). Note that John, which is bound to different roles in the two

propositions, is represented by different vectors in the two propositions: John is represented by the

"vertical" (agent) vector in the first proposition, and by the "horizontal" (patient) vector in the

second.

Figure 3. (a) Hypothetical vector representations of John, Mary, the agent and patient roles of love

(x y) (lover [L1] and beloved [L2], respectively), and the agent and patient roles of fear (x y) (fearer

[F1] and feared [F2], respectively). Black circles indicate values of 1 (active units) and circles

indicate values of 0 (inactive units). (b) Matrix of dot-products (similarities) of the vectors in (a).

For example, the entry in row J, column M is the dot product of the vector for John with the vector

for Mary. Empty cells indicate values of zero. (c) Vectors formed by synchronizing (i.e., adding)

each object vector in (a) with each role vector. For example, vector J+L1 is the vector produced by

synchroniziong (adding) the vector for John with the vector for lover. Pairs of vectors represent

propositions. For example, J+L1 and M+L2 represent the role-filler bindings in love (John Mary)

and jointly represent that proposition. (d) Matrix of dot-products (similarities) of the

(synchronized) vectors in (c). Note that the dot product for any pair of synchronized vectors (from

c) is the sum of the dot products of the corresponding simple vectors (from a). For example, the

dot product of J+L1 (John+lover) with M+F1 (Mary+fearer) (4) equals the dot product of John

with Mary (2) plus the dot product of lover with fearer (2). The similarity of synchronized vectors

scales with the sum of the similarities of the simple vectors from which they are composed.

Figure 4. Illustration of the representation of the proposition love (John Mary) in LISA's long-term

memory. See text for details.

Figure 5. (a) LISA representation of the rule, "X is input (proposition P1) and X is output

(proposition P2)". (b) LISA representation of the question, "1 is input. What is output?" LISA

"answers" the question in (b) by mapping the analog in (b) onto the analog in (a), (which binds the

value 1 to the variable X) and then mapping back, creating the proposition P2 = "1 is output" in the

analog in (b). See text for details.

1

input

P1
input (1)

input+
1

P1
input (X

)

input+
X

input
X

output

output+
X P2

output (X
)

(a)
(b)

Sem
antic U

nits

1

num
ber

output

role
input

Figure 5

love (John M
ary)

John+love1
M

ary+love2

love1
John

love2
M

ary

Structure U
nits:

P
roposition
(P

) units
Sub-P

roposition
(SP

) units

P
redicate

and
O

bject U
nits

Sem
antic U

nits

Figure 4

J) John
M

) M
ary

L
1) lover

L
2) beloved

F
1) fears

F
2) is feared

fear (John M
ary)

fear (M
ary John)

love (John M
ary)

love (M
ary John)

J+F
1

M
+F

2

M
+F

1

J+F
2

J+L
1

M
+L

2

M
+L

1

J+L
2

JML
1

L
2

F
1

F
2

J

M

L1

L2

F1

F2

4

4

4

4

4

4

2

2

2

J+F
1

M
+F

2

M
+F

1

J+F
2

J+L
1

M
+L

2

M
+L

1

J+L
2

J+F1

M+F2

M+F1

J+F2

J+L1

M+L2

M+L1

J+L2

8

8

8

8

8

8

8

8

2
6

4
6

2
4

4

4
6

2
6

4
4

2
4

4
6

2

4
4

2
6

2
6

4

4
62

(a)
(b)

(c)
(d)

Figure 3

Filler 1 (agent)
John P

redicate
love

F
iller2 (patient)

M
ary

F
iller2 (patient)

John

P
redicate

love

(a) love (John M
ary)

(b) love (M
ary John)

Filler 1 (agent)
MaryFigure 2

John

P
redicate

Filler

run
w

alk

P
redicate

eat

P
redicate

(a)

 run (John)

(b)

 w
alk (John)

(c)

 eat (John)

Figure 1

