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Abstract

Ramscar and colleagues (2010, this volume) describe the ‘‘feature-label-order’’ (FLO) effect on

category learning and characterize it as a constraint on symbolic learning. I argue that FLO is neither

a constraint on symbolic learning in the sense of ‘‘learning elements of a symbol system’’ (instead, it

is an effect on nonsymbolic, association learning) nor is it, more than any other constraint on category

learning, a constraint on symbolic learning in the sense of ‘‘solving the symbol grounding problem.’’
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1. Introduction

Ramscar et al. (2010) present the ‘‘feature-label-order’’ (FLO) effect, in which subjects

are better at learning to predict an object’s label from its features than the reverse. The

authors’ primary concern is the FLO effect as a constraint on how people learn the referents

of concrete nouns (object categories and colors). They conclude that FLO serves as a con-

straint on the symbol grounding problem and on symbolic learning more broadly.

The authors are either attempting to provide a nonsymbolic account of symbolic learning

or they are raising a nonsymbolic phenomenon to the level of a symbolic one. In either case,

their FLO effect fails to rise to the level of a constraint on symbolic learning. The authors’

arguments are symptomatic of a broader misunderstanding within cognitive science about

the nature of symbol systems. I begin by reviewing what I see as the key differences

between nonsymbolic and symbolic representations and processes, drawing on an analogy

to first- and second-order logics, respectively. I follow this review with a discussion of why
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FLO is not a constraint on symbolic learning, in general, and then with a critique of the

authors’ arguments about the role of FLO as a constraint on symbol grounding.

2. Symbolic and nonsymbolic systems

Simply being a representation is not by itself sufficient to render a representation symbolic,

and simply being a process (e.g., learning) over one or more representations is not sufficient

to render that process symbolic (Cheng, 1997; Chomsky, 1959; Deacon, 1997; Fodor &

Pylyshyn, 1988; Holyoak & Thagard, 1995; Hummel & Holyoak, 1997, 2003; Penn, Holyoak,

& Povinelli, 2008; Rumelhart, McClelland, and The PDP Research Group, 1986). As pointed

out by Peirce (1879, 1903; see also Deacon, 1997), representations reside in a hierarchy con-

sisting of icons (which denote things by virtue of resembling them), indices (such as words,

which denote things without resembling them), and symbols (icons or indices that, by virtue

of the system of which they are a part, can be combined and recombined to represent different

kinds of relations among things). Key here is the notion of different kinds of relations.

2.1. Symbolic (explicitly relational) systems

Consider natural language, a symbolic (or, equivalently, explicitly relational; Hummel &

Holyoak, 1997, 2003) representational system (Chomsky, 1959; Jackendoff, 1997). This

system is explicitly relational in the sense that it represents relations as explicit entities (i.e.,

as nouns, verbs, adjectives, adverbs, prepositions, or as complete phrases or clauses) that

take arguments. John can love Mary, or be taller than Mary, or be the father of Mary, or all

of the above. The vocabulary of relations in a symbol system is open-ended (i.e., as elabo-

rated below, variabilized), and relations can take other relations as arguments (e.g., Mary

knows John loves her). More importantly, not only can John love Mary, but Sally can love

Mary, too, and in both cases it is the very same ‘‘love’’ relation. The love relation is promis-

cuous, free to take different arguments on different occasions. Its arguments enjoy the same

promiscuity: The Mary that John loves can be the very same Mary that is loved by Sally.

This capacity for dynamic recombination is at the heart of a symbolic representation and is

not enjoyed by nonsymbolic representations.

2.2. Representing relations versus explicitly relational representations

Relations are central to symbolic representations, but many things represent relations

without being symbolic. The value of Vij in Rescorla and Wagner’s (1972) model of associa-

tive learning represents an associative relation between unconditioned stimulus (US) i and

conditioned stimulus (CS) j. Similarly, connection weight wij in a connectionist network

represents a coactivation relation over units i and j (roughly ‘‘i should be active when j is’’

when wij is positive, or ‘‘i should be inactive when j is active’’ when wij is negative), and

the links in a causal Bayes network represent causal relations between the nodes they con-

nect. Even the output of a ganglion cell in the retina represents a relation (a contrast)
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between two adjacent locations on the retina. But none of these representations is explicitly

relational (i.e., symbolic) in the manner described above.

The reasons are twofold. First is that the system (e.g., connectionist network, Rescorla–

Wagner model, or Bayes net) has a very limited vocabulary of relations, usually consisting

of only a single relation: Vij always represents an associative relation; wij always represents

a coactivation relation (in a connectionist model) or a causal relation (in a Bayes net); and

the output of a ganglion cell always represents a particular local contrast on the retina. Sec-

ond, and more fundamentally, these relations are not free to vary in their ‘‘arguments’’

(indeed, it is a misnomer to speak of their ‘‘arguments’’ at all): A given ganglion cell always

represents the contrast at the same location on the retina (move to a new location and a dif-

ferent ganglion cell will represent the contrast there); for a given value of i and j, Vij always

represents the associative strength between the same US and the same CS (change the US

[the value of i] or the CS [the value of j] and not only is the value of Vij likely to change, the

variable itself will have changed: V1,2 is a different variable than V1,3 or V3,4—that is,

although you and I recognize that V1,2 and V3,4 represent the same relation between different

arguments, the system itself has absolutely no appreciation of this fact); the same applies to

the various wij in a connectionist or Bayes net. The ‘‘relations’’ in a nonsymbolic system

lack the promiscuity of the relations (and arguments) in a symbol system.

2.3. Why promiscuity matters

It is the promiscuity of symbolic representations—the ability to bind the same relation to dif-

ferent arguments and the same arguments to different relations dynamically—that gives sym-

bol systems the expressive (and therefore computational) power they enjoy over nonsymbolic

(e.g., associative) systems (see, e.g., Deacon, 1997; Doumas, Hummel, & Sandhofer, 2008;

Fodor & Pylyshyn, 1988; Gentner, 1983; Hummel & Holyoak, 1997, 2003). It is what makes

humans capable of being engineers, scientists, and users of natural languages whereas our clos-

est cousins in the animal kingdom are not (Penn et al., 2008). And it is what makes learning

symbolic representations vastly more difficult than learning nonsymbolic representations

(such as associations). A simple association, like those learned by the Rescorla–Wagner model,

can be learned simply by tabulating the co-occurrence of various things (e.g., CSs and USs or

objects and labels) in the world (which is precisely what the Rescorla–Wagner model does). A

relation like taller than, in contrast, does not appear in the form of such simple co-occurrences:

John can be taller than Mary, a beer bottle is taller than a beer can, and an apartment building is

taller than a house. But in what sense, other than being taller than something, is John like a beer

bottle or an apartment building? Making matters worse, Mary is taller than the beer bottle and

the house is taller than John. Precisely because of their promiscuity, relational concepts defy

learning in terms of simple associative co-occurrences (Doumas et al., 2008).

2.4. Representational systems and logics

The ability of symbol systems to variablize relations whereas nonsymbolic systems

cannot renders the difference between nonsymbolic and symbolic systems analogous to the
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difference between first- and second-order logics.1 This analogy can be illustrated by refer-

ence to the Peano Axioms (i.e., the axioms Italian mathematician Giuseppe Peano used to

axiomatize integer arithmetic). A first-order logic makes it possible to variablize (i.e., quan-

tify over) the arguments of functions or relations, but the functions or relations themselves

must be constants (much like relations must be constants in nonsymbolic systems). For

example, one of the Peano axioms states that for every natural number, x, x = x. The variab-

lization in this statement is the ‘‘for every,’’ the relation is ‘‘=’’ and the argument is ‘‘x.’’

Note that the variablization refers to the argument, ‘‘x,’’ not the relation, ‘‘=.’’ For this rea-

son, this axiom is expressible in first-order logic, as are the majority of the Peano axioms.

However, it is well known that first-order logic is not powerful enough to axiomatize integer

arithmetic. For this, we need second-order logic. The difference between first- and second-

order logic is that the latter makes it possible to variablize not only arguments but also

functions and relations (much like a symbolic system can variablize relations). The ability

to variablize relations makes it possible to state the induction axiom: If / is a unary predi-

cate such that (a) /(0) is true and (b) for every natural number, x, the truth of /(x) implies

the truth of /(S(x)) (where S(x) is simply the successor function, x + 1), then /(x) is true for

all x. Without the induction axiom, it is not possible to prove theorems about infinite sets of

numbers, that is, about arithmetic itself.2 Note that what gives the induction axiom the

power to support such generalization is precisely the same thing that renders it an axiom of

second-order logic, namely the fact that it variablizes not only arguments, x, but also

functions, /, over those arguments. It is this same capacity to variablize relations that gives

symbol systems their expressive power.

3. Why FLO is not a constraint on symbolic learning

Just as second-order logics permit qualitatively different kinds of inferences than do first-

order logics (a difference so profound that it is possible to axiomatize integer arithmetic

using one but not the other), symbol systems permit qualitatively different kinds of process-

ing (such as learning and inference) than do nonsymbolic systems (a difference so profound

that our symbolic species dominates the planet, whereas our nonsymbolic cousins do not).

So the difference between symbolic and nonsymbolic systems is real and important. But

why does this fact imply that the FLO effect is not an effect on symbolic learning?

The answer begins with the fact that the FLO effect was predicted by the decidedly non-

symbolic Rescorla–Wagner model (see Cheng, 1997). FLO is a constraint on (nonsymbolic)

association learning. Inasmuch as association learning is a component of symbolic learning

(and there is a reason to believe it is; Doumas et al., 2008), it may also be a constraint on

symbolic learning. But in this case, calling it a ‘‘constraint on symbolic learning’’ is a bit

like calling a constraint on addition a ‘‘constraint on the integral calculus.’’ The ‘‘larger

sum law’’ (which I just made up and which states that the sum of two positive nonzero

addends is larger than either addend) is a ‘‘law’’ that belongs in the purview of addition; try-

ing to publish said law as ‘‘a constraint on the integral calculus’’ would, while not exactly

wrong in the very strongest sense, nonetheless be misleading and possibly harmful,
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especially to the extent that anyone in the article’s target audience struggles to understand

the difference between addition and integration: The ‘‘larger sum law’’ really is a law of

addition, not integration. In the same way, the FLO effect (if true) is a constraint on associa-

tive, not symbolic learning.

But it gets worse. Even though first-order logic is, in some sense, a component of second-

order logic, not all constraints that apply to first-order logic apply to second-order logic.

Most obviously, the constraint ‘‘thou shall not quantify over predicates’’ applies to first but

not second-order logic. Less obviously, Kurt Gödel proved the completeness of first-order

logic. But it would be a mistake to assume that this law also applies to second-order logic:

The same Kurt Gödel also proved that no logic powerful enough to axiomatize integer arith-

metic (i.e., second- and higher-order logics) can be both complete and consistent. The point

is that even if x is a component of y (as first-order logic is a component of second-order

logic, and as association learning may be a component of symbolic learning) not everything

that is true of x will necessarily be true of y. Thus, even if Ramscar et al. (2010) demon-

strated that FLO is a constraint on a kind of association learning, and even if association

learning can be plausibly argued to be a component of symbolic learning, it does not follow

that FLO is also a constraint on symbolic learning.

Where does this leave us? We know that FLO may serve as a constraint on a kind of asso-

ciative learning. We know that at least some kind of associative learning is likely to be a

component of symbolic learning. Given this, either (a) FLO is a constraint on both associa-

tive and symbolic learning, in which case it is better described as a ‘‘constraint on learning’’

than as a ‘‘constraint on symbolic learning,’’ or else (b) it is a constraint on associative

learning but not symbolic learning, in which case the statement ‘‘FLO is a constraint on

symbolic learning’’ is simply wrong. Possibilities (a) and (b) are exhaustive and neither is

consistent with the claim that FLO is a constraint on symbolic learning.

3.1. Symbol grounding

What about the more modest claim that FLO is a constraint on symbol grounding (the

authors’ primary claim)? Even this more restricted interpretation of the authors’ argument

runs into difficulties. The authors demonstrated the FLO effect using concrete concepts:

feature-based object categories in Experiment 1 and colors in Experiment 2. And their data

suggest that for these concrete, nonrelational concepts, FLO may serve as a constraint on

learning to associate labels with them.

However, many concepts for which we have names are much more relational in nature (see,

e.g., Gentner & Kurtz, 2005; Jackendoff, 1997). These include verbs (Gentner, 1978, 1981),

adjectives (such as taller than), adverbs (such as very), prepositions, and even nouns, in the case

of role-governed categories (Markman & Stilwell, 2001)—categories such as friend, barrier,

and container, which are defined by the relational role in which an object participates, rather

than the literal features of the object itself. A nonsymbolic system such as the Rescorla–Wagner

model cannot even represent such concepts, much less learn anything about them.

Ironically, the best hope for the authors’ argument may be that the ‘‘symbol grounding

problem,’’ as described in their article, does not require symbolic representations at all. The
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FLO effect is at best a constraint on how we learn to associate labels—indices, in the parlance

of Peirce (1879, 1903)—with category members. But recall that not all indices are symbols

(as such the ‘‘symbol grounding problem’’ is perhaps better called the ‘‘index grounding

problem’’). An index is only a symbol if it is part of a system that allows it to combine promis-

cuously with other symbols in order to express different kinds of relations. There is little

doubt that many nonhuman animals have something like indices—as evidenced, for example,

by my dog’s ability to retrieve her toys by name (‘‘Go get your squirrel!’’). But this fact does

not render their mental representations symbolic, and it is not what’s hard about ‘‘symbolic

learning’’: The hard part of symbolic learning is dissociating indices from their specific fea-

tures and contexts to render them promiscuous. My dog has learned, perhaps via mechanisms

very much like those the authors propose, to go get her squirrel; but from this, it does not fol-

low that I will ever be able to count on her to go find me a container, a barrier, or a friend (or

even to find me a toy squirrel in a different context), much less to engineer me a

bridge—activities that depend on genuinely symbolic representations.

The authors’ data suggest that FLO may serve as a constraint on learning to associate indi-

ces with their (concrete) referents, and it is in this context that it may be called a constraint on

the index grounding problem. Or to put it another way, it is a constraint on how we learn cate-

gories (under speeded conditions, when the categories have a complex, nonfamily-resem-

blance structure; see the Methods section of Ramscar et al.’s Experiment 1). But this fact

does not raise it to the level of a ‘‘constraint on symbolic learning’’ any more than it does any

other constraint on category learning. And even if FLO were a major constraint on index

grounding, it is by no means clear that this fact would contribute much to our understanding

of how the mind solves the difficult problem of symbolic learning: Although ‘‘symbol

grounding’’ is a hard philosophical problem, that it is not what’s hard about symbolic learning

as a psychological ⁄ biological problem as evidenced by the fact that many animals appear to

have something like categories (i.e., grounded indices), whereas of the species investigated to

date, only humans appear to have genuinely symbolic representational systems (see Penn

et al., 2008; see Doumas et al., 2008, on the difficulty of symbolic learning).

4. Conclusion

Feature-label-order is a comparatively minor effect on category learning, predicted by a

40-year-old model of associative learning in rats, demonstrated under cognitively limiting

circumstances, which the authors have gone through extensive verbal acrobatics to imbue

with meaning it does not have.

Notes

1. In fact, nonsymbolic systems might be more accurately compared with propositional

logics (which are weaker than first-order logics), but for the purposes of this example,

it is sufficient to ‘‘promote’’ them to the level of a first-order logic. That is, even if we
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assume that nonsymbolic systems are more powerful than they actually are, their

weakness relative to symbolic systems can be illustrated by analogy to the difference

between first- and second-order logics.

2. It is difficult to overstate the importance of the induction axiom. Without it, it would

be impossible to prove such a simple statement as ‘‘for all x, S(x) > x.’’ Instead, you

would have to prove it for all natural numbers individually: Having proven it for 1, 2,

3, … up to 1,000,000, you would not know whether it is true for 1,000,001. The

induction axiom, which requires the power of a second-order logic, is thus absolutely

essential for axiomatizing integer arithmetic.
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