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Abstract 
 

Traditional connectionist networks are sharply limited as 
general accounts of human perception and cognition because 
they are unable to represent relational ideas such as loves 
(John, Mary) or bigger-than (Volkswagen, breadbox) in a 
way that allows them to be manipulated as explicitly 
relational structures. This paper reviews and critiques the four 
major responses to this problem in the modeling community: 
(1) reject connectionism (in any form) in favor of traditional 
symbolic approaches to modeling the mind; (2) reject the idea 
that mental representations are symbolic (i.e., reject the idea 
that we can represent relations); and (3) attempt to represent 
symbolic structures in a connectionist/neural architecture by 
finding a way to represent role-filler bindings. Approach (3) is 
further subdivided into (3a) approaches based on varieties of 
conjunctive coding and (3b) approaches based on dynamic 
role-filler binding. I will argue that (3b) is necessary to get 
symbolic processing out of a neural computing architecture. 
Specifically, I will argue that vector addition is both the best 
way to accomplish dynamic binding and an essential part of 
the proper treatment of symbols in a neural architecture. 
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Introduction 

 
Along with our ability to use language, the major factor 

distinguishing human thinking from the cognitive abilities 
of all other primates is our ability to reason about relations 
(Oden, Thompson & Premack, 2001; Penn, Holyoak & 
Povinelli, 2008). Relational thinking is thinking that 
depends on the relational roles in which objects (and other 
relations) are engaged, rather than just the literal features of 
the objects themselves. The ability to think explicitly about 
relations is central to mathematics, science, art, engineering 
and everything else uniquely human (Holland et al., 1986; 
Holyoak & Thagard, 1995), including activities as mundane 
as planning a meal, making an analogy and judging basic 
perceptual similarities (Gentner, 1983; Goldstone, Medin & 
Gentner, 1991; Hummel, 2000; Palmer, 1978; Taylor & 
Hummel, 2009). 

Relational thinking is so commonplace that it is easy to 
assume that the computational mechanisms underlying it 
must be relatively simple. They are not. Relational thinking 
is a late evolutionary development tied closely to the size 
and complexity of the human frontal cortex (Robin & 
Holyoak, 1995; Stuss & Benson, 1986). It is also late to 
develop in childhood (see Smith, 1989) and highly 
susceptible both to the capacity limits of working memory 
(WM) (see Hummel & Holyoak, 1997, 2003) and to brain 

insult, especially to the frontal cortex (Morrison et al., 2004; 
Viskontas et al., 2004; Waltz et al., 1999). 

 
Requirements for Relational Thinking 

 
Why should relational thinking pose such a challenge to 

evolution (note that it appears to have taken roughly four 
billion years to evolve) and to the cognitive architecture? 
The answer lies in part with the fact that learning in neural 
networks is inherently spatial, in the sense that a change in 
the strength of a synapse alters the relation between the 
neurons sharing that synapse but has no direct effects on the 
rest of the brain: Any learning that takes place between a 
pair of neurons can only affect the mappings in which that 
pair of neurons takes part. As a result, if a neural network 
learns a response (the post-synaptic neuron) to a stimulus 
(the pre-synaptic neuron), then it can generalize that 
response to new stimuli that activate the same pre-synaptic 
neuron, but it cannot, without additional learning, generalize 
to new stimuli that fail to activate the pre-synaptic neuron. 
When the pre-synaptic neuron represents, say, an object 
feature, this kind of learning provides for a kind of 
automatic generalization to objects similar to those used in 
training. 

Note, however, that this kind of generalization depends 
critically on what, exactly, our pre-synaptic neuron 
represents. If our pre-synaptic neuron represents a basic 
feature such as red, independent of the context in which red 
appears, then it provides the potential for generalization to 
any new red object. But if the neuron turns out to represent 
something more like red square, then the learned response 
will only generalize to red squares.1 (If it truly represents 
“red square” then it could be expected to generalize to red 
squares at any size, location, etc., but only to red squares.) 
In other words, we can only expect the learning to 
generalize to all red things to the extent that our pre-
synaptic neuron represents red independently of the object’s 
other properties. Or in still other words, a neuron’s range of 
generalization is identical to its range of response 
invariance. 

This independence requirement is straightforward in the 
context of basic object properties such color and shape. (At 
this point, you may be thinking “Of course a neural network 

                                                             
1 For clarity, I am describing the neuron’s response as 
though it were all-or-none. Exactly the same logic applies if 
we replace “if the neuron represents” with “to the extent that 
the neuron represents”, but the wording becomes more 
cumbersome. 



can only respond to something to the extent that it actually 
represents that thing!”) But the independence requirement 
introduces complexity in the case of relational 
generalization—i.e., generalizations and inferences that 
depend on the relational roles in which objects are engaged 
rather than just the features of the objects themselves—i.e., 
precisely those kinds of generalizations and inferences that 
are the hallmark and power of relational thought—because 
it implies that, in order to make inferences based on 
relational roles, a neural network must be able to represent 
those roles independently of their arguments (Hummel & 
Holyoak, 1997). 

That people can represent relational roles independently 
of their arguments is evidenced by our ability to understand 
how “John loves Mary” is similar to “Susan loves Bill” or to 
understand how the lower left pair of shapes is similar to the 
upper pair of shapes in Figure 1 (Hummel, 2000). In turn, 
representing relational roles independently of their 
arguments makes it necessary to specify the binding of roles 
to their arguments dynamically, i.e., as needed and in a way 
that does not affect the representation of either the roles or 
their fillers (Hummel & Biederman, 1992; Hummel & 
Holyoak, 1997).  

 

 
Figure 1. Illustration of our ability to appreciate 
relational similarities. The left pair of lower objects is 
similar to the top pair of objects, even though they are 
different shapes, because both pairs satisfy the same-
shape (x, y) relation. 
 
There is substantial evidence that the need to dynamically 

bind relational roles to their arguments is at least one of the 
reasons why relational thinking is slow to develop in 
childhood, dependent on attention and WM and susceptible 
to brain damage (in brief, because it depends on attention, 
which depends on inhibition; for reviews, see Cowan, 2001; 
Hummel & Holyoak, 2003). It is tempting to speculate that 
the need for dynamic role-filler binding is also one of the 
reasons why relational thought was so late to evolve: It is 
simply not obvious (certainly to many neural network 
modelers, and so perhaps not to evolution, either) how to do 
dynamic role-filler binding in a neural architecture. 
Additional reasons it might have been late to evolve are that 
(a) it is possible, in many finite domains, to asymptotically 
approximate the power of relational thinking in a non-
relational architecture, so perhaps there has historically been 

insufficient selection pressure to make the great leap from 
non-relational to relational thought; and (b) learning abstract 
relational concepts (such as same-as, or insufficient-to, or 
even larger-than) from concrete examples itself poses a 
complex computational problem that may rely on the power 
of analogical mapping for its solution (Doumas, Hummel & 
Sandhofer, 2008). 

It is interesting to note that the requirements for relational 
representation (and thought)—the ability to represent 
relational roles independently of their arguments and the 
ability to bind representations of roles dynamically to 
representations of their arguments—are precisely the same 
as the requirements for symbolic representation and thought 
(Hummel, 2010). As noted by Peirce (1879, 1903; see also 
Chomsky, 1959; Deacon, 1997), a symbolic representation 
is one that makes it possible to combine and recombine a 
finite number of elements in order to express an open-ended 
number of relations. In order to do so, the elements 
(symbols) must be independent of one another and the 
symbol system of which they are a part must be capable of 
specifying how they are bound together in any given 
expression. For this reason, I shall use the term “symbolic” 
and “explicitly relational” interchangeably. 

 
Achieving Independence and Role-Filler 

Binding in a Neural Architecture 
 
In traditional symbolic systems, such as propositional 

notation and labeled graphs, role-filler independence and 
binding are provided by the syntax of the system. For 
example, in propositional notation, the binding of arguments 
to roles is specified by the order of the arguments in the 
parentheses, so that loves (John, Mary) means “John loves 
Mary” whereas loves (Mary, John) means “Mary loves 
John”. These systems thus satisfy the requirements for 
symbolic representation by assumption. However, as 
pointed out forcefully by the connectionists in the mid-
1980s (Rumelhart et al., 1986), these traditional symbolic 
approaches to knowledge representation suffer sharp 
limitations as accounts of knowledge representation in 
human cognition. Among other problems, they fail to 
capture the semantic content of the things they represent 
(e.g., the symbols “John” and “Mary” do not specify what 
John and Mary have in common or how they differ; Doumas 
& Hummel, 2005, showed that this limitation is 
fundamental to the approach and cannot be remedied using 
the tools of propositional notation or its isomorphs) and it is 
not at all clear how they could be implemented neurally. 

Instead, these and other researchers proposed that human 
cognition is sub-symbolic—that the seemingly symbolic 
character of human thought is really just an epiphenomenon 
of the less-than-symbolic passing around of activation in 
large networks of neurons. To a first approximation, this 
claim must be correct: The mind is a consequence of the 
activity of the brain. But to a second approximation, it is the 
much stronger claim that the mind is not symbolic. And 
indeed, the vast majority of connectionist models in the 



literature are consistent with this stronger claim, in the sense 
that they lack the capacity to represent relational roles 
independently of their arguments and to bind roles to their 
arguments dynamically (for reviews, see Bowers, 2009; 
Bowers, Damian & Davis, 2009; Hummel & Holyoak, 
2003; Marcus, 1998). 

Responses to the non-symbolic nature of traditional 
connectionist networks have come in three broad flavors. 
The first, exemplified by Fodor and Pylyshyn (1988), is to 
acknowledge that connectionist networks are non-symbolic, 
to argue that human mental representations are symbolic 
and to conclude that connectionism is therefore 
fundamentally ill-equipped to account for human cognition, 
preferring instead traditional symbolic approaches. The 
problem with this approach is that it is left with all the 
limitations of traditional symbolic approaches that 
motivated the connectionists in the first place (Doumas & 
Hummel, 2005; Hummel & Holyoak, 1997, 2003). 

The second broad response to the non-symbolic nature of 
traditional connectionist networks is to argue that human 
mental representations are also non-symbolic and conclude 
that connectionism is therefore fundamentally well-
equipped to account for human cognition (e.g., Elman, 
1990; McClelland, McNaughton & O’Reilly, 1995; 
Reynolds & O'Reilly, 2009; O’Reilly, Busby & Soto, 2003; 
Rogers & McClelland, 2004, 2008; St. John & McClelland, 
1990). The limitation of this response is that it fails to 
account for all those aspects of human cognition that depend 
on relational/symbolic representations—that is, everything 
uniquely human (and, arguably, most interesting). This 
shortcoming is exemplified by the limitations of a recent 
connectionist model (Leech, Mareschal & Cooper, 2008) of 
a quintessentially relational process, the making of 
analogies. In brief, this model “simulates the development 
of analogical mapping” by failing to accomplish analogical 
mapping—a failure that is unsurprising given that the model 
lacks relational representations (see, e.g., the commentaries 
of Doumas & Richland, 2008; French, 2008; Holyoak & 
Hummel, 2008; Morrison & Cho, 2008; Petrov, 2008; and 
Sloutsky, 2008, among others).  

The third broad response to the non-symbolic nature of 
traditional connectionist networks is to attempt to bridge the 
gap between connectionist and symbolic models, specifying 
what is needed to render a neural network symbolic. Central 
to this enterprise is developing a neurally-plausible solution 
to the role-filler binding problem. Recall that the goal is to 
bind relational roles to their fillers in a way that allows the 
representation of a role to remain independent of its filler 
and vice-versa. 

Within this broad approach to representing symbols in a 
neural architecture are two more specific approaches, one 
based on varieties of conjunctive coding (including tensor 
products and variants of them, such as holographic reduced 
representations, or HRRs) and the other based on varieties 
of dynamic binding (including both synchrony and 
asynchrony of neural firing). 

Smolensky (1990) was the first to propose tensor products 
as a solution to the binding problem for neural networks. 
The basic idea is to represent relations (or relational roles) 
and their arguments as vectors (call them r and a, 
respectively) and to represent bindings of these roles and 
arguments as tensors, ra, where ra is simply the outer 
product of r with a. That is, 

 

! 

ra ij = ria j            (1) 
 
Eq. (1) represents a tensor product binding a relational 

role (more accurately, a predicate) to a single argument. 
Bindings of relations to multiple arguments can be 
represented by higher-rank tensors. For example, the tensor 
binding relation r to arguments a and b, can be formed as a 
straightforward generalization of (1): 

 

! 

rabijk = ria jbk   (2) 
 
Halford (1992) argued that the fact that the dimensionality 

of a tensor (i.e., the number of vector elements in the tensor) 
scales exponentially with the rank of the tensor (i.e., the 
number of vectors that get multiplied together to form the 
tensor) provides a natural account of the capacity limit of 
WM. The basic idea is that the greater the number of role 
bindings, the greater the number of neurons required to 
represent the resulting tensor, so the number of role 
bindings we can represent (i.e., the rank of the tensor) is 
necessarily limited. 

Holographic reduced representations (Plate, 1991; see 
also Gayler, 2003; Gayler & Levy, 2009) are a variant of the 
tensor product coding approach to binding that reduces the 
dimensionality explosion problem (which Halford viewed as 
a strength) by summing the resulting tensors over reverse 
diagonals to reduce them to vectors whose dimensionality is 
equal to the dimensionality of the original vectors from 
which the tensors were formed. For example, whereas as an 
N X N X N tensor would be N3 dimensional, an HRR 
computed over this tensor would only be N dimensional.  

A limitation of this approach is that information is lost in 
the dimensionality reduction: Just as information is lost in 
the mapping from a 3-dimensional world to a 2-dimensional 
image on the retina (resulting in the unsolvable “inverse 
optics problem”), so is information lost in the mapping from 
an ND-dimensional tensor product to an N-dimensional 
HRR. (This problem is a special case of the fact that a sum 
[in this case, an HRR] underdetermines its addends [in this 
case, the tensor product].) It is for this reason that models 
based on HRRs typically use sparse vectors in a very high-
dimensional vector space: It helps them to avoid mistaking 
one role-binding for another just by chance. 

But by far the most important limitation of this approach 
is that it is ultimately based on tensor products for role-filler 
binding, and tensor products violate role-filler 
independence. As summarized previously, the fact that 
learning in neural networks is spatial implies that 
generalization in a neural network depends on the 



similarity—that is, the vector similarity—of trained patterns 
to new ones. And the similarity, i.e., the inner product, of 
two tensors scales as the product of the inner products of the 
basis vectors from which the tensors were formed. For 
example, if ra is the tensor product of r with a and r’a’ is 
the tensor product of r’ with a’, then:  

 

! 

ra •r 'a'= (r •r')(a •a') ,  (3) 
 

where the • symbol denotes the “dot” or inner product. 
Equation 3 implies that even if r and r’ are identical, if a 
and a’ are very different (e.g., with an inner product of 
zero), then the tensor ra will be very different (e.g., with an 
inner product of zero) from r’a’: Bound to sufficiently 
different arguments, the same role has nothing in common 
with itself (and conversely, bound to sufficiently different 
roles, the same argument has nothing in common with 
itself).  

This behavior represents an extreme violation of 
independence: Returning to Figure 1, it implies that if the 
vector representing the shape of a lightning bolt has an inner 
product of zero (i.e., shares no shape features with) the 
vector representing the shape of a circle (which is not 
entirely implausible), then the tensor representing same-
shape (bolt1, bolt2) would have an inner product of zero—
i.e., would have no units in common with—the tensor 
representing same-shape (circle1, circle2). The resulting 
representations would make it impossible to appreciate that 
the pair of lightning bolts is in any way more similar to the 
pair of circles than is the pair of mismatched shapes. And 
even though an inner product of zero represents an extreme 
case, the point does not lose its force if we relax the 
assumption and allow the inner product to take a small 
positive value (see Figure 2). 

Although the inner product is a particularly relevant 
measure of vector similarity (since it is the input function 
for units in the vast majority of connectionist networks), by 
way of completeness, it is worth noting that the same 
multiplicative relation holds if we define vector similarity 
using the cosine rather than the inner product: 

 

! 

cos(ra,r'a') = cos(r,r')cos(a,a'),   (4) 
 

where cos(x, y) is simply the cosine of the angle between 
vectors x and y. (Since the cosine of the angle between x 
and y is simply x•y divided by the product of their lengths, 
for vectors normalized to have length 1.0, their dot product 
is equal to the cosine of the angle between them.) 

Since HRRs are derived from tensors, a similar, albeit 
more complex, multiplicative relation also holds between 
the similarity of two HRRs and the similarities of the basis 
vectors from which they were formed. These similarity 
relations are depicted in Figure 2(b). As is clear in the 
figure, both tensors and HRRs strongly violate role-filler 
independence, rendering them inadequate as a basis for role-
filler binding for the purposes of achieving symbolic neural 
computation. 

Tensor products and HRRs are special cases of 
conjunctive coding, in which each unit codes for a 
conjunction of a relation (or relational role) and one or more 
arguments; in the case of tensors and HRRs, the 
conjunctions are formed by vector multiplication (Eq. 1). 
Although tensors and HRRs are distributed representations, 
whereas traditional conjunctive codes tend to be more 
localist, they are nonetheless conjunctive representations, in 
the sense that they represent the logical and of the entities 
they bind. Logical and is the equivalent of arithmetic 
multiplication, giving rise to the multiplicative similarity 
relations expressed in Eq. (3) and (4) and illustrated in 
Figure 2. That is, although distributed, tensors and HRRs 
are nonetheless conjunctive. 

 

 

 
Figure 2. (a) Tensor similarity and (b) HRR similarity as a 

function of role and filler similarity. In both cases, role and 
filler similarity interact to determine role+filler binding 
similarity. That is, under both tensor- and HRR-based 
binding, roles are not independent of their fillers. 

 
An alternative to binding by vector multiplication is  

binding by vector addition: Relational roles and objects are 
represented as activation vectors and a role is bound to an 



object by adding (rather than multiplying) the corresponding 
vectors. Binding by synchrony of firing (Hummel & 
Biederman, 1992; Hummel & Holyoak, 1997, 2003; Shastri 
& Ajjenagadde, 1993) and by systematic asynchrony of 
firing (Doumas et al., 2008; Love, 1999) are examples of 
binding by vector addition. 

  

 
Figure 3. Under additive binding roles and fillers 
contribute independently (i.e., do not interact) to 
determine the similarity of bound representations.  
 
In contrast to vector multiplication, which causes role and 

argument/filler vectors to interact in determining the bound 
vectors’ similarity, vector addition causes roles and fillers to 
contribute independently to the final similarity of the bound 
representations (as illustrated in Figure 3). As such, they 
completely preserve the independence of roles and 
arguments required for useful relational representations.  

One limitation of binding by vector addition is that it is 
inherently capacity-limited. For example, in the case of 
binding by synchrony, although there is no necessary limit 
on the number of neurons that can fire in synchrony with 
one another, there is a limit on the number of separate 
groups of neurons that can be active simultaneously while 
firing mutually out of synchrony with one another (Hummel 
& Biederman, 1992; Hummel & Holyoak, 1997, 2003). This 
limitation of binding by synchrony (and also systematic 
asynchrony) of firing provides a very natural account of the 
limits on human WM (see Hummel & Holyoak, 2003) and 
visual attention (see Hummel, 2001). 

Embedded in the right cognitive architecture, binding by 
vector addition (i.e., synchrony or asynchrony of neural 
firing) provides a very natural account of many aspects of 
human perception and cognition. Keith Holyoak and I 
showed (Hummel & Holyoak, 1997) that it provides a 
surprisingly complete account of memory retrieval and 
analogical mapping (the process of discovering how the 
elements of one domain correspond to the elements of 
another for the purposes of reasoning from one to the other).  

Later we showed (Hummel & Holyoak, 2003) that the 
same principles, embodied in the same architecture, account 
for a great deal of what we know about analogical inference 

(making inferences from a better-know situation to a less-
well-known one) and schema induction (using the two 
specific situations to learn a more general rule about what 
situations of that kind have in common). These models 
account for both the strengths and the limitations of human 
relational reasoning.  

Doumas et al. (2008) later used these same principles to 
account for a very large number of phenomena in cognitive 
development (see also Doumas & Hummel, 2010). The 
same principles have been shown to account for the role of 
attention and WM in reasoning (Hummel & Holyoak, 
2003), the effects of frontotemporal degeneration (Morrison 
et al., 2004) and normal aging (Viskontas et al., 2004) on 
relational thinking. 

These principles also provide a powerful account of 
aspects of shape perception and object recognition 
(Hummel, 2001; Hummel & Biederman, 1992), and have 
made numerous novel predictions that have been 
empirically confirmed (Stankiewicz & Hummel, 2002; 
Stankiewicz, Hummel & Cooper, 1998; Thoma, Davidoff & 
Hummel, 2007; Thoma, Hummel & Davidoff, 2004; among 
others; see Thoma & Davidoff, 2007, for a more complete 
review). In brief, these principles predict that if, and only if, 
a person attends to visual stimulus will that person generate 
a relational (i.e., analytic, i.e., symbolic) representation of 
that stimulus. The findings reviewed in Thoma and 
Davidoff (2007), which come from numerous laboratories, 
numerous methodologies and numerous subject populations, 
all support this prediction. 

Binding by vector addition is not just a good idea from 
first theoretical principles. As it happens, it is also a 
powerful tool for helping us to understand how our minds 
actually work. 

Conclusion 
An analysis from first principles, in terms of the goal of 

representing role-filler bindings without violating role-filler 
independence, suggests that binding by vector addition 
(including but not necessarily limited to binding by 
synchrony and asynchrony of neural firing) is likely to be an 
important step toward getting relational representations and 
processes out of a neural computing architecture. The broad 
successes of various models based on this principle in 
accounting for aspects of human perception and cognition 
serve as evidence of its utility as a principle of neural 
computation. And although controversial, there is also 
empirical support for the role of synchrony for binding in 
the neuroscience literature (e.g., Asaad, Rainer & Miller, 
1998; Desmedt & Tomberg, 1994). These factors suggest 
that vector addition is an essential part of the proper 
treatment of symbols in a neural architecture. 
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