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Abstract 
 

The dominant approaches to theorizing about and modeling human object recognition are 
the view-based approach, which holds that we mentally represent objects in terms of the 
(typically 2-dimensional; 2-D) coordinates of their visible 2-D features, and the structural 
description approach, which holds that we represent objects in terms of the (typically 
categorical) spatial relations among their (typically volumetric) parts. This chapter reviews the 
history and nature of these (and other) models of object recognition, as well as some of the 
empirical evidence for and against each of them. I will argue that neither account is adequate to 
explain the full range of empirical data on human object recognition and conclude by suggesting 
that the visual system uses an intelligent combination of structure- and view-based approaches.  
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Object recognition is a fundamental process that serves as a gateway from vision to 
cognitive processes such as categorization, language and reasoning. The visual representations 
that allow us to recognize objects do more than merely tell us what we are looking at. They also 
serve as a basis for visual reasoning and inference: We may recognize a hammer, not only as an 
object called “hammer” and an object for pounding nails into wood, but also as an object of 
about the right weight to balance a beam of a certain length on a fulcrum, an object with which to 
prop open a door, or an object to tie to the end of a rope for the purposes of throwing it over a 
high branch in the service of making a swing. 

One of the most remarkable properties of the human capacity for object recognition is our 
ability to recognize objects from a variety of viewpoints despite the fact that different viewpoints 
can projects radically different—even non-overlapping—images to the retina. And given the 
retinotopic mapping of early cortical visual processing (e.g., in V1, V2 and to a lesser extent, 
V4), non-overlapping retinal images give rise to non-overlapping cortical representations, even 
moderately “late” in the ventral processing stream (i.e., the visual pathway responsible for our 
ability to know what we are looking at, as opposed to knowing how to interact with it 
motorically; see, e.g., Goodale et al., 1991). But despite the varying retinal and cortical 
representations resulting from different object views, we somehow manage to recognize all these 
different images as arising from the same object—an accomplishment that, on its face, is so 
remarkable that it largely dominated the study of object recognition for three decades or more 
(see Palmer, 1999, for a review). However, as important and impressive as this capacity is, it is 
just one aspect of our remarkable capacity for visual object recognition. 

The process of recognizing an object is a process of matching a representation of a 
viewed object to a representation stored in long-term memory (LTM). These stored and matched 
representations consist largely (albeit not exclusively; Rossion & Pourtois, 2004) of information 
about an object’s shape (Biederman & Ju, 1988; Mapelli & Behrmann, 1997; Op de Beeck et al., 
2000). Accordingly, the study of object recognition consist largely (although not exclusively) of 
the study of the mental representation of object shape, and the vast majority of theories of object 
recognition are, effectively, theories of the mental representation of shape. 

This chapter is organized as follows. In aid of understanding the major theories of object 
recognition I will begin by reviewing the formal properties of representations of shape. I will 
next describe the major theories of human shape perception and object recognition. The majority 
of the chapter will be spent reviewing the empirical literature on object recognition with an eye 
toward the implications of these findings for the two dominant theories of object recognition—
the view-based account and the structural description account. I will argue that neither account is 
adequate to explain the full range of empirical data on human object recognition and conclude by 
suggesting that the visual system uses an intelligent combination of structure- and view-based 
approaches. 

 
Representations of Object Shape 
 

A representation of shape is defined by four properties (Hummel, 1994; Palmer, 1978). 
The first is a set of primitive elements. These may be as simple as individual pixels (e.g., as 
found in some ideal observer models of object recognition; Liu, Knill & Kersten, 1995), as 
complex as volumetric parts (e.g., Marr & Nishihara, 1978) or assertions about the categorical 
properties of object parts (e.g., Biederman, 1987; Hummel & Biederman, 1992; Hummel, 2001), 
or more commonly, features of intermediate complexity, such as image edges and vertices (e.g., 



	   3	  

Lowe, 1987; Poggio & Edelman, 1990) or collections of edges and vertices (e.g., Fukushima & 
Miyake, 1982; Riesenhuber & Poggio, 2002). 

The second defining property of a representation of shape is a reference frame within 
which the arrangement of an object’s features or parts is specified. These may be object-centered 
(e.g., Marr & Nishihara, 1978), viewer-centered (e.g., Hummel & Biederman, 1992; Poggio & 
Edelman, 1990; Riesenhuber & Poggio, 2002; Ullman & Basri, 1991) or a mixture of the two 
(e.g., Hummel, 2001; Hummel & Stankiewicz, 1996a; Lowe, 1987; Ullman, 1989).   

Mixtures of object- and viewer-centered reference frames come in two varieties. Three-
dimensional (3-D) model-based models, such as those proposed by Lowe (1987) and Ullman 
(1989), hold that we mentally represent objects as detailed 3-D models, which we match to 2-D 
object images by a kind of “back projection” akin to the manner in which a three-dimensional 
model is mapped to a specific object view in computer graphics1. The viewed two-dimensional 
object image is then matched point-by-point against the 2-D view produced by the back 
projection. These models represent a mixture of object- and viewer-centered reference frames in 
the sense that the stored 3-D model is fully object-centered, but the 2-D back-projected view is 
matched to the object image in a viewer-centered reference frame. 

The other way to mix reference frames is to specify some dimensions in viewer-centered 
terms and others in object-centered terms. This kind of mixture is possible because a reference 
frame is defined by three properties, any of which can be either viewer- or object-centered (or, 
for that matter, environment-centered, although this latter approach is never used): The origin is 
the point relative to which the reference frame is defined (in the viewer-centered case, the origin 
is defined relative to the viewer, and in the object-centered case, it defined relative to the object). 
A scale maps distances on the object or in the image to distances in the reference frame. And an 
orientation maps directions (in the image or on the object) to directions in the reference frame. A 
common way to mix object- and viewer-centered components is to define the origin and scale of 
the reference frame relative to the object but define the orientation relative to the viewer 
(Hummel, 2001; Hummel & Stankiewicz, 1996a; Olshausen, Anderson & Van Essen, 1993). 

The third dimension of the representation of shape is a vocabulary of relations specifying 
the arrangement of the primitives within the reference frame. The most straightforward approach 
is simply to specify the locations of primitives in terms of their coordinates, i.e., their numerical 
relations to the origin of the reference frame. This approach characterizes “view-” or 
“appearance-based” models (Edelman & Intrator, 2001; Poggio & Edelman, 1990; Olshausen et 
al, 1993; Riesenhuber & Poggio, 2002; Ullman & Basri, 1991) as well as 3-D model-matching 
models (Lowe, 1987; Ullman, 1989). Alternatively, more complex primitives (such as convex 
object parts [Marr & Nishihara, 1978; Biederman, 1987] or surfaces [Leek Reppa & Arguin, 
1995]) may be represented in terms of their relations, not to the origin of the reference frame, but 
to one another. Made explicit in this way, inter-part relations may be represented metrically or 
categorically (e.g., “above” vs. “below” and “larger” vs. “smaller”; Biederman, 1987; Hummel 
& Biederman, 1992) or both (e.g., Hummel, 2001; Hummel & Stankiewicz, 1996a, 1998). In 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

1	  Given	  a	  specification	  an	  object’s	  coordinates	  in	  3-‐D	  space	  (e.g.,	  the	  coordinates	  of	  various	  
features	  on	  its	  external	  surfaces)	  and	  given	  a	  specification	  of	  the	  angle	  and	  distance	  from	  
which	  the	  object	  is	  viewed,	  the	  mathematics	  governing	  the	  projection	  of	  points	  on	  the	  
object’s	  visible	  surfaces	  to	  points	  in	  the	  resulting	  image	  of	  the	  object—i.e.,	  the	  mathematics	  
of	  projective	  geometry—are	  well	  constrained	  and	  have	  been	  well	  understood	  for	  a	  very	  
long	  time.	  	  It	  is	  these	  mathematics	  that	  allow	  Pixar	  to	  create	  its	  movie	  magic.	  
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general, representing inter-part relations explicitly provides tremendous representational 
flexibility, both in the vocabulary of relations that can be represented, and in the manner in 
which those relations can be specified. 

The final dimension of a representation of shape, closely related to the issue of 
coordinates vs. relations, is the distinction between holistic vs. analytic representations. An 
analytic representation is one in which the components of the representation are made explicit 
and expressed relative to one another and/or to the representation as a whole. In the case of shape 
perception, a structural description specifying an object’s shape in terms the spatial relations 
among its component parts would be an analytic representation. Other examples of analytic 
representations include propositions (e.g., loves (John, Mary)) and sentences (e.g., “John loves 
Mary”). In all three cases, the component parts (e.g., the object parts, in the case of the structural 
description, or the relation loves and the actors John and Mary in the proposition and sentence) 
are represented explicitly in terms of their relations to one another (e.g., a structural description 
might express which object parts are connected to one another, which are larger than others, etc.; 
the proposition and sentence both express that John is the lover and Mary the beloved). In turn, 
representing these components explicitly implies representing them independently of one 
another. The independence of John with Mary and loves is what makes it possible for us to 
understand what loves (John, Mary) has in common with hates (John, Mary) or loves (John, 
Susan), and how they differ (Hummel & Biederman, 1992; Hummel & Holyoak, 1997, 2003). 

A holistic representation is simply the opposite: It is one in which the components of the 
representation are not represented independently of one another or of their place in the 
representation as a whole. Quintessential examples of holistic representations in human vision 
include face perception (see Rhodes & Peterson, 2003) and color perception. Face perception is 
holistic in the sense that we match faces “all of a piece” to representations stored in memory, 
with little or no explicit knowledge of a face’s details. As a result, we are generally capable of 
saying who looks like whom, but barring obvious categorical features such as scars or facial hair, 
we are generally at a loss to say why. Similarly, color perception tends to be quite holistic as 
evidenced by the fact that we have difficulty categorizing colors in terms of their underlying 
physical dimensions of hue, saturation and brightness. Any color is some combination of these 
dimensions, but because we perceive them holistically we are at a loss to respond to them 
individually. (Contrast this situation with the case of “John loves Mary” or the case of a 
structural description specifying something like “cone on top of brick”: Although we cannot 
easily say how one shade of red differs from another, we can easily say how “cone on top of 
brick” differs from “cylinder on top of brick”.) 

There is no necessary logical linkage between relations vs. coordinates on the one hand 
and analytic vs. holistic representations on the other: In principle, it is possible to imagine either 
analytic or holistic representations of either relations or coordinates. But as a matter of 
psychological fact, relational representations are analytic (i.e., when one thinks about relations, 
one is thinking explicitly; see e.g., Holyoak & Thagard, 1995; Hummel & Holyoak, 1997; 
Stankiewicz, Hummel & Cooper, 1998; Thoma, Hummel & Davidoff, 2004) whereas coordiate-
based representations lend themselves naturally to holistic coding (e.g., as in the case of face 
perception, for which there is evidence of coordinate-based coding of a face’s features; Cooper 
& Wojan, 2000). As such, the issue of explicit relations vs. coordinate-based coding in shape 
perception is de facto bound up with the issue of analytic vs. holistic representations of shape: 
Structural description models, which propose that we represent the relations among an object’s 
parts explicitly, therefore propose that the representation of shape is analytic, whereas view-
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based models, which represent objects in terms of their features coordinates, are naturally much 
more holistic. (At the same time, it is possible to reason explicitly, i.e., analytically, about 
coordinates, as when we solve problems in analytic geometry.) 

 
Models of Object Recognition 
 

Any model of object recognition is a collection of commitments to the four dimensions of 
shape representation summarized above. Although in principle the dimensions are independent 
of one another, in practice commitments to particular values on them tend to cluster.  

One group of models, collectively referred to as view- or appearance-based, are based on 
simple primitives such as vertices (Edelman & Intrator, 2001; Olshausen et al., 1993; Poggio & 
Edelman, 1990; Ullman & Basri, 1991) or collections of contour elements (Riesenhuber & 
Poggio, 1999, 2002), represented in terms of their numerical coordinates in a viewer-centered 
reference frame (or at least partly viewer-centered; many view-based models assume that images 
are normalized for translation and scale prior to recognition). In some of these models (e.g., 
Edelman & Intrator, 2001, 2003; Poggio & Edelman, 1990; Ullman & Basri, 1991), the 
representation of object shape is taken to be the vector of the 2-D retinal coordinates of the 
vertices present in an object view; that is, the primitives themselves are not part of the 
representation at all except inasmuch as they determine which coordinates get into the vector.  In 
these models, the primitives are simple local image elements (lines and/or vertices), the reference 
frame is viewer-centered, the relations are numerical coordinates and the representation is 
holistic. 

As noted previously, a related group of models, 3-D model-matching models (e.g., Lowe, 
1987; Ullman, 1989), assumes that objects are represented in LTM as 3-D models but are 
matched to object images by back-projecting the models onto the image.  These models assume 
an object-centered reference frame for the 3-D model and a viewer-centered reference frame for 
the 2-D matching process.  Like the view-based models, matching in these models is based on 
local image features specified in terms of their retinotopic coordinates. 

A third group of models assert that objects are represented as structural descriptions 
(e.g., Biederman, 1987; Clowes, 1967; Dickenson, Pentland & Rosenfeld, 1992; Hummel & 
Biederman, 1992; Marr & Nishihara, 1978; Sutherland, 1968), which specify an object’s 
volumetric parts in terms of their relations to one another.  In these models, the primitives are 
volumetric parts or part attributes (i.e., generalized cylinders [Dickenson et al., 1992; Marr & 
Nishihara, 1978] or geons, which are classes of generalized cylinders that can be discriminated 
from one another based on non-accidental properties of image edges [Biederman, 1987; 
Hummel, 2001; Hummel & Biederman, 1992; Hummel & Stankiewicz, 1996a]), the reference 
frame may either be object-centered (Marr & Nishihara, 1978), viewer-centered (Biederman, 
1987; Hummel & Biederman, 1992) or mixed (Hummel, 2001; Hummel & Stankiewicz, 1996a), 
the relations between an object’s parts are represented explicitly and the resulting representations 
are analytic.  For example, a coffee mug might be represented as a curved cylinder (the handle) 
end-connected to the side of a straight vertical cylinder (the body of the mug). 

Still a fourth class of models assumes a combination of the view- and structural-
description-based approaches (Hummel, 2001; Hummel & Stankiewicz, 1996a). These models 
assume that the visual system generates part-based structural descriptions of attended objects and 
simultaneously generates view-like holistic representations (which are nonetheless invariant with 
translation and scale) of unattended objects. 
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Evaluating View- and Structure-based Models of Object Recognition 
 

The view- and structural description-based approaches are the dominant approaches to 
modeling/theorizing about human object recognition and have motivated the majority of the 
theory-driven empirical research. Accordingly, I shall structure my review of the empirical 
literature around an evaluation of these two general theoretical approaches. 

The structural description approach to object recognition was first proposed by Clowes 
(1967) and Sutherland (1968) and it was first proposed as a solution to the problem of view-
invariant object recognition by Marr (1982; Marr & Nishihara, 1978). (Indeed, the roots of the 
structural description account, with its emphasis on relations rather than metric coordinates, date 
back at least as far as the Gestaltists; e.g., Köhler, 1940; Wertheimer, 1924/1950.) It was first 
popularized as a serious theory of human object recognition by Biederman (1987), who proposed 
that people recognize objects as collections of geons—classes of volumetric primitives that can 
be distinguished from one another based on non-accidental 2-D properties of image edges—in 
particular categorical relations to one another. The impact of Biederman’s work was that it 
showed how the information necessary for view-invariant object recognition could be recovered 
from the information available in an object’s 2-D image. Hummel and Biederman (1992) later 
showed how the fundamental operations proposed by Biederman (1987) could be accomplished 
in a neural computing architecture, and demonstrated that the resulting model successfully 
simulated the strengths and limitations of the human ability to recognize objects despite 
variations in viewpoint. 

The view- and structure-based approaches to object recognition grew from very different 
starting points. With Marr & Nishihara’s (1978) work, the structural description approach started 
with an analysis at Marr’s (1982) computational theory level of how the problem of view-
invariant recognition could be accomplished, in the abstract. Biederman (1987) provided a 
psychologically plausible algorithmic account of this general approach, and Hummel and 
Biederman (1992) demonstrated how the resulting algorithm could be realized in neural 
hardware. Central to (especially more recent) structural description accounts is the assumption 
that objects are represented in terms of their parts’ spatial relations to one another. 

The view-based approach was arguably inspired much more from the opposite end: From 
the very beginning (e.g., Poggio & Edelman, 1990), the goal was to understand how neural 
networks could accomplish pattern recognition, and neural plausibility remains a primary 
motivation behind much view-based modeling (see, e.g., Riesenhuber & Poggio, 1999, 2002; 
Edelman & Intrator, 2003). Fundamental insights came from Poggio and Girosi (1990) who 
showed that a Gaussian radial basis function, which is easy to instantiate in a neural computing 
architecture, is in some senses an optimal classifier, and from Ullman and Basri (1991), who 
showed that, provided some basic assumptions could be satisfied (e.g., that all features of an 
object be visible in all possible views of that object), an object could be recognized in any 3-D 
view as a linear combination of stored 2-D views of the object. In other words, view-invariant 
recognition of 3-D objects could be accomplished by simple vector operations (which are easy to 
implement in neural networks) on stored 2-D views without having to store, compute or even 
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estimate any of the object’s 3-D properties. Central to all these modeling efforts is the 
assumption that objects are represented as vectors of features and/or feature coordinates.2 

 
The effects of viewpoint on object recognition 
 
Throughout most of the 1990s and into the early 2000s, an often acrimonious debate 

raged—both in the literature and at scientific meetings—between the proponents of view-based 
models of object recognition and the proponents of structural description models. This debate 
centered on the question of just how view-specific vs. view-invariant the representation of object 
shape really is. The proponents of structural description models argued (and marshaled evidence 
demonstrating) that the visual representation of shape is largely invariant with (i.e., unaffected by 
changes in) the location of an object’s image in the visual field (Biederman & Cooper, 1991a), 
the size of the image (up to the limits of visual acuity; Biederman & Cooper, 1992), left-right 
reflection (Biederman & Cooper, 1991a) and rotation in depth up to parts occlusion (Biederman 
& Bar, 1999, 2000; Biederman & Gerhardstein, 1993, 1995; Biederman & Subramaniam, 1997; 
Hayworth & Biederman, 2005; Kayert, Biederman, Op De Beeck, & Vogels, 2005; Kayert, 
Biederman & Vogels, 2003; Vogels, Biederman, Bar & Lorincz, 2001).  

By contrast, the proponents of view-based models of object recognition argued (and 
marshaled evidence demonstrating) that object recognition is largely sensitive to rotation in the 
picture plane (Tarr & Pinker, 1989; 1990) and rotation in depth (Edelman & Bülthoff, 1992; 
Hayward & Tarr, 1997; Logothetis, Pauls, Bülthoff, & Poggio, 1994; Poggio & Edelman, 1990; 
Tarr & Bülthoff, 1995; Tarr, Bülthoff, Zabinski & Blanz, 1997; Tarr, Williams, Hayward & 
Gauthier, 1998).  

It turns out that the question of whether object recognition looks view-invariant or view-
sensitive hinges largely on the stimuli and tasks used to ask the question (Biederman & 
Subramaniam, 1997; Liu, Knill & Kersten, 1995). With objects that can be easily segmented into 
distinct volumetric parts in distinct spatial relations, the visual representation of shape (as 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

2	  At	  this	  point,	  students	  of	  cognitive	  psychology	  may	  be	  scratching	  their	  heads	  and	  
wondering,	  “Hey,	  isn’t	  this	  view-based	  approach	  just	  the	  same	  thing	  as	  template	  matching,	  
which	  I	  read	  about	  in	  my	  intro	  to	  cog	  psych	  textbook	  and	  which	  is	  obviously	  wrong	  as	  an	  
account	  of	  human	  object	  recognition?”	  The	  answer	  is,	  “Well,	  yes	  and	  no.”	  Template	  
matching,	  the	  whipping-‐boy	  presented	  and	  dismissed	  in	  intro	  texts,	  is	  most	  often	  presented	  
as	  matching,	  pixel-‐by-‐pixel,	  a	  viewed	  image	  of	  an	  object	  to	  a	  literal	  image	  stored	  in	  the	  
head.	  Inasmuch	  as	  view-‐based	  models	  match	  feature	  coordinates	  rather	  than	  individual	  
pixels,	  the	  answer	  is	  No,	  they	  are	  not	  the	  same	  (an	  object’s	  image	  contains	  fewer	  “features”	  
than	  pixels).	  However,	  in	  all	  other	  respects	  they	  are	  very	  much	  the	  same,	  in	  the	  sense	  of	  
directly	  matching	  the	  exact	  2-‐D	  shape	  of	  an	  object’s	  image	  to	  a	  set	  of	  precise	  2-‐D	  
coordinates	  stored	  in	  memory.	  And	  in	  this	  sense,	  the	  view-‐based	  approach	  was	  basically	  
falsified	  before	  Ullman	  &	  Basri	  (1991)	  or	  Poggio	  &	  Edelman	  (1990)	  published	  their	  first	  
papers	  advocating	  the	  approach.	  At	  the	  time	  I,	  too,	  scratched	  my	  head	  and	  asked,	  “Hey,	  
don’t	  we	  already	  know	  what’s	  wrong	  with	  this	  approach?”	  (see	  Hummel	  &	  Biederman,	  
1992;	  Hummel,	  1994,	  2000;	  Hummel	  &	  Stankiewicz,	  1996b).	  But	  for	  whatever	  reason,	  the	  
proponents	  of	  view-‐based	  models	  never	  bothered	  to	  cite	  the	  Gestaltists	  and	  others	  who	  
had	  so	  long	  before	  demonstrated	  the	  fundamental	  inadequacy	  of	  their	  approach.	  	  
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measured, for example, by visual priming) appears quite view-invariant, up to parts occlusion: 
One view of a volumetric object will visually prime a different view of the same object just as 
much as it primes itself, so long as all the same parts are visible in both views (Biederman & 
Gerhardstein, 1993). It is this kind of stimulus that Biederman and colleagues used in the 
majority of their studies demonstrating view-invariance. But with stimuli that are not easy to 
segment into distinct parts in distinct relations (e.g., the kind of object that would result from 
bending a paperclip in several places at various angles) the representation of shape is quite 
sensitive to the orientation from which the object is viewed. It is this kind of stimulus that 
Bülthoff, Tarr and colleagues used in the majority of their studies demonstrating view-
sensitivity.3 

The debate over the view-dependence vs. view-invariance of object recognition was 
fueled largely by the fact that view-based models (as suggested by the name) tend to be more 
view-sensitive than structural description models, whose early development (Marr & Nishihara, 
1978; Biederman, 1987) was motivated largely by the question of how the visual system 
achieves view-invariant object recognition, and which therefore tends to predict substantial view-
invariance in the visual representation of object shape. The question of view-dependence vs. 
view-invariance therefore seemed to be the deciding factor between these two classes of models.  

But it is not (Hummel, 1994, 2000, 2003a; Hummel & Stankiewicz, 1996b, 1998). 
Models in either class can be modified to act more or less view-invariant as demanded by the 
data. That is, neither are view-based models fundamentally view-sensitive nor are structural 
description models fundamentally view-invariant. For example, the view-based model of Ullman 
and Basri (1991) stores only 2-D representations of individual object views in memory, but 
predicts complete view-invariance in object recognition provided enough such views are stored 
(where “enough” can be a surprisingly small number). 3-D model-matching models, which are 
very much like view-based models in how they match object images to models in memory, also 
predict complete invariance in object recognition. And it is perfectly possible to render a 
structural description model more view-sensitive simply by including, in an object’s description, 
information about the angle in which it is viewed (see Hummel, 2001b; Stankiewicz, 2002). As 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

3	  In	  response	  to	  this	  situation,	  it	  is	  natural	  to	  ask	  “So:	  Who’s	  right?	  Which	  kind	  of	  stimulus	  
is	  ‘better’?”	  By	  way	  of	  answering	  this	  question,	  it	  is	  worth	  noting	  that	  the	  use	  of	  bent	  
paperclip-‐like	  stimuli	  was	  motivated	  by	  the	  fact	  that	  the	  view-‐based	  model	  of	  Ullman	  &	  
Basri	  (1991)	  only	  works	  if	  all	  of	  an	  object’s	  features	  are	  visible	  in	  all	  views.	  	  If	  one	  part	  of	  
an	  object	  can	  occlude	  another	  part	  of	  that	  object	  (e.g.,	  in	  the	  way	  that	  you	  cannot	  see	  the	  
backs	  of	  most	  objects	  when	  you	  are	  looking	  at	  their	  fronts),	  then	  the	  mathematics	  that	  form	  
the	  foundation	  of	  the	  Ullman	  &	  Basri	  model	  become	  undefined	  (i.e.,	  the	  system	  breaks,	  
resulting	  in	  a	  runtime	  error	  if	  you	  happen	  to	  be	  running	  the	  model	  on	  a	  computer).	  Bent	  
paperclips	  have	  the	  desirable	  property	  that	  all	  their	  features	  (i.e.,	  the	  places	  where	  they	  
bend)	  are	  visible	  in	  (virtually)	  all	  possible	  views.	  	  In	  other	  words,	  bent	  paperclips	  were	  
chosen	  as	  stimuli	  because	  they	  are	  the	  only	  kind	  of	  stimulus	  most	  view-‐based	  models	  of	  the	  
time	  were	  capable	  of	  recognizing.	  They	  are	  a	  “good”	  choice	  of	  experimental	  materials	  to	  the	  
extent	  that	  they	  are	  representative	  of	  other	  objects	  in	  our	  visual	  world.	  Rather	  than	  passing	  
judgment	  myself,	  I	  invite	  the	  reader	  to	  list	  as	  many	  objects	  as	  he	  or	  she	  can	  that,	  like	  bent	  
paperclips,	  have	  all	  their	  features	  visible	  in	  all	  views.	  
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such, all the fighting about the view-sensitivity vs. view-invariance of object recognition that 
dominated the 1990s and early 2000s turned out to be much ado about not very much. 

Although view-sensitivity is not the (or even a) fundamental difference between the 
view- and structure-based approaches to object recognition, there are four differences between 
these competing accounts that do turn out to be fundamental: (1) They differ in their 
commitment to strictly 2-D information vs. more 3-D inferences about the representation of 
object shape. (2) They differ in their approach to representing the configuration of an object’s 
features or parts, with view-based models strongly committed to representing an object’s features 
in terms of their numerical coordinates (see Hummel, 2000, for an explanation of why; in brief, it 
is because feature vectors are mathematically well-behaved whereas categorical relations are not) 
and structural description theories committed to representing an object’s features or parts in 
terms of their (typically categorical) spatial relations to one another. (3) View-based models are 
committed to a holistic coding of object shape, in which all an object’s features are represented 
as coordinates in the same, unitary feature vector, whereas structural descriptions are part-based 
analytic representations, which represent an object’s part attributes independently of one another 
and of their interrelations (see Hummel, 2001, 2003b). And (4) because of (3), structural 
description models predict that the representation of an object’s shape will differ qualitatively 
depending on whether it is attended or ignored; view-based models predict no qualitative effects 
of visual attention on the representation of object shape. On all four of these fundamental 
commitments, the view-based approach runs into difficulty as an account of human shape 
perception and object recognition. And on the fourth, so does the structural description approach. 

 
The role of 2-D and 3-D representations of shape in object recognition 
 
Liu, Knill & Kersten (1995) did a groundbreaking study demonstrating that no model 

based strictly on 2-D representations of object shape can provide an adequate account of human 
shape perception. They trained human observers to classify two kinds of objects: “bent 
paperclip”-like objects of the kind that have been used to demonstrate view-sensitivity in object 
recognition and novel volumetric objects of the kind that have been used to demonstrate view-
invariance. They also trained two ideal observers (i.e., mathematical models that perform a task 
as well as it is logically possible to perform it with the information they are given) to classify the 
same objects. One of these ideal observers was a 2-D ideal: An ideal observer that, like a view-
based model, stored only 2-D object views in memory and matched them against 2-D images for 
classification. Being an ideal observer, this model performed as well as it is logically possible to 
perform the object classification task using only stored 2-D views. The other ideal observer was 
a 3-D ideal. It made inferences about an object’s 3-D shape based on the information in a 2-D 
view of an object and used these inferences as the basis for classifying the viewed images. Since 
ideal observers are ideal, human observers rarely perform as well they do, with efficiency (i.e., 
human accuracy divided by ideal accuracy) typically well below 0.5. The only way a human can 
outperform an ideal observer is by having access to information to which the ideal does not.  

With the bent paperclip objects, Liu et al. (1995) found that the 2-D ideal observer 
outperformed the human observers (i.e., with human efficiency less than 1.0), a pattern 
consistent with the humans storing and matching 2-D views of these objects. However, with the 
volumetric objects, the human observers outperformed the 2-D ideal, indicating that the human 
observers were using information about 3-D shape to which the 2-D ideal did not have access. 
(Unsurprisingly, the humans still under-performed the 3-D ideal even with the volumetric 
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objects.) The human observers’ ability to outperform the 2-D ideal with volumetric objects is 
very strong evidence that people do not recognize volumetric objects simply by storing and 
matching 2-D views of those objects. 

 
The role of spatial relations in shape perception and object recognition 
 
Another fundamental difference between the view- and structure-based approaches (a 

difference that also happens to characterize the difference between non-human and human 
primates; see Penn, Holyoak & Povenelli, 2008) concerns whether relations are represented 
explicitly or not. Structural descriptions (and humans) represent relations (e.g., relative size, 
relative location, relative orientation, etc.) explicitly; view-based models (and, apparently, non-
human primates) do not. Along with language, the human ability to reason explicitly about 
relations is arguably the basis of virtually everything uniquely human, including art, science, 
mathematics and engineering (see Holyoak & Thagard, 1995; Hummel & Holyoak, 1997, 2003).  

That we can perceive the spatial relations among an object’s parts is undeniable and is 
evidenced, for example, by our ability to name them and to use them as the basis for making 
analogies between objects (see Hummel, 2000). And although the perception of spatial 
relations—and the role of explicit relations in object recognition—have received comparatively 
little empirical attention, what evidence there is suggests that, as predicted by the structural 
description approach, explicit representations of an object’s inter-part spatial relations play an 
important role in the representation and encoding of object shape. 

Hummel and Stankiewicz (1996b) directly tested categorical spatial relations against 
coordinate-based representations using a variety of object identification tasks (including basic 
recognition, same/different judgments and similarity judgments). Specifically, we trained human 
subjects to recognize a collection of stick-arrangement objects like those used by Tarr & Pinker 
(1989, 1990) in their demonstrations of the sensitivity of object recognition to orientation in the 
picture plane. We deliberately chose these objects because they do not have distinguishable parts 
in distinguishable relations (all their “parts” are simply straight lines of various lengths 
connected at right angles); that is, we designed the objects to be similar to the kinds of objects 
typically used to demonstrate view-based effects in studies of object recognition.  

After training, we tested our subjects for their ability to distinguish the trained objects 
from two kinds of distractors (see Figure 1): One kind of distractor (coordinate distractors) was 
designed to maximize a distractor’s similarity to a trained object in terms of the literal 
coordinates of its critical features (the line endpoints) while changing one categorical relation 
present in the trained object (e.g., one line might be moved so that it went from being centered-
above the line to which it was connected to being centered-below the line to which it was 
connected, a change that affected exactly two sets of coordinates, namely, those of the endpoints 
of the moved line). The other kind of distractor (categorical distractors) were designed to distort 
more coordinates (four rather than two) but leave the categorical (e.g., above/below) relations 
between the parts intact.  
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Figure 1.  Illustration of the kind of stimuli used by Hummel & Stankiewicz (1996b).  For each 
trained stimulus (Trained in the Figure) there were two distractorsi, one designed to match the 
trained stimulus in terms of its literal feature coordinates but mismatch in one categorical spatial 
relation (Coordinate Distractor) and one designed to mismatch the trained stimulus in twice as 
many stimulus coordinates but to match the trained stimulus in terms of the categorical relations 
among its parts (Categorical Distractor). 

 
To the extent that people represent the trained objects in terms of the coordinates of their 

critical points, they should find the coordinate distractors more confusable with the trained 
targets than the categorical distractors. But to the extent that they represent the trained targets in 
terms of the categorical relations among their parts, they should find the categorical distractors 
more confusable with the corresponding trained targets than the coordinate distractors. The 
results were not subtle. Across a variety of tasks, our subjects found the categorical distractors 
much more confusable with the corresponding targets than the coordinate distractors. 

Cooper and Wojan (2000) conducted a similar study with faces as stimuli. Their interest 
was in whether face identification (as in “Who’s face is this?”) is based on a coordinate-based 
representation whereas basic-level face recognition (as in “Is this a face or not?”) is based on an 
explicit representation of the categorical relations among the face’s parts. Their logic was similar 
to that of Hummel and Stankiewicz (1996b): They showed subjects either undistorted images of 
the faces of famous people, distortions in which one eye was moved up from its normal location 
on the face (changing its categorical spatial relation to the other eye but disrupting the 
coordinates of only one eye), or distortions in which both eyes had been moved up from their 
normal locations (preserving the categorical spatial relation between the eyes, but distorting 
twice as many feature coordinates as in the one-eye-moved case). To the extent that people use a 
coordinate-based representation, the two-eyes-moved images should be harder to recognize than 
the one-eye-moved images; but to the extent that they use a representation based on the 
categorical relations between the features of a face, the one-eye-moved images should be harder 
to recognize. Given a face identification task (“who is this?”), Cooper and Wojan found that 
subjects had more difficulty with the two-eyes-moved than the one-eye-moved stimuli, 
suggesting that face identification is based on a holistic, coordinate-based representation of the 
stimulus face (consistent with the vast literature on face identification; see, e.g., Rhodes & 
Peterson, 2003).  But given a face recognition task (“is this a face or not?”), the one-eye-moved 
stimuli were harder to classify than the two-eyes-moved stimuli, consistent with a representation 
based on explicit categorical relations between the faces’ parts. 

Turning to object category learning, Saiki and Hummel (1996) showed that object 
categories defined by conjunctions of parts in specific spatial relations are much easier to learn 
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than categories defined by conjunctions of parts in specific colors or colors in specific relations, 
even when the learnability of categories defined by colors, parts and relations, individually, is 
equated. In other words, the human object category learning system is biased to learn objects 
consisting of parts in specific spatial relations. In related research, Saiki and Hummel (1998a) 
showed that people perceive the spatial relations among connected objects parts differently than 
the relations among non-connected parts (e.g., among other things, people are more sensitive to 
part-relation bindings for connected than non-connected parts). 

In summary, the comparatively few data there are on the representation of spatial 
relations for object recognition suggest that people do explicitly represent the spatial relations 
among an object’s parts in the service of object recognition and object category learning. 

 
Independence of part attributes in the representation of shape 
 
One of the most basic predictions of Biederman’s (1987) theory of object recognition is 

that people will activate a representation of an object’s convex parts on the way to recognizing 
the object. In a now classic collection of experiments, Biederman and Cooper (1991b) used a 
visual priming paradigm to directly test this prediction. In Experiment 1, Biederman and Cooper 
formed complementary images of objects by starting with line drawings and removing half the 
contours and vertices from each of an object’s parts. The removed contours and vertices were 
then used to make a second line drawing of the same object. The two line drawings were 
complements of one another in the sense that, although they depicted all the same volumetric 
parts, they had no local features (contours and vertices) in common. Biederman and Cooper 
showed that one member of an image-complement pair would visually prime the other member 
of the pair just as much as it primed itself: From the perspective of the visual priming, there was 
no difference between the two images, even though they had no local features in common. 

In Experiment 2, Biederman and Cooper (1991b) formed complementary images by 
removing half the volumetric parts from one image in order to form the other. As with the 
complementary images from Experiment 1, together the two complements formed a complete 
line drawing of the object. But in Experiment 2, in contrast to Experiment 1, the two images 
depicted none of the same parts. This time, Biederman and Cooper found that complementary 
images did not visually prime one another at all. Taken together, the results of Experiments 1 and 
2 show that two line drawings of the same object will visually prime one another if and only if 
they depict the same volumetric parts—a pattern that constitutes strong evidence for some kind 
of parts-based representation of shape being activated in the service of object recognition. Based 
on Biederman and Cooper’s data it is impossible to know whether the observed priming resides 
in a representation of volumetric parts, per se, vs. whether it resides in a representation of the 
surfaces composing those volumes (Leek, Reppa & Arguin, 2005). But regardless, it is clear that 
the priming resides in a representation of parts (surfaces or volumes) substantially more abstract 
than simple local image features. 

Part of representing the relations among an object’s parts explicitly is representing them 
independently of the parts so related (Arguin & Saumier, 2005; Hummel, 1994, 2000; 2001; 
Hummel & Biederman, 1992; Hummel & Holyoak, 1997, 2003). A corollary of this principle is 
that the visual system is well advised to represent high-level shape attributes, such as the 
attributes describing the shape of a geon, independently as well. In Hummel & Biederman’s 
(1992) structural description model, JIM, as well as in JIM’s successors, JIM2 (Hummel & 
Stankiewicz, 1996) and JIM3 (Hummel, 2001), this independence takes the form of separate 
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units representing the various shape attributes of an object part (e.g., one set of neuron-like units 
represents whether a geon’s cross section is straight or curved, a separate set represents whether 
its major axis is straight or curved, and still other units represent its other shape attributes, its 
location in the visual field, etc.) and the relations between parts (e.g., separate units represent 
relations such as above, below, larger, smaller, etc.). This independence makes it possible to 
appreciate what different geons have in common and how they differ. Representing a cone-
shaped part simply as the atom “cone” and a cylinder simply as “cylinder” fails to specify what 
cones have in common with cylinders.  But representing a cone as “curved cross-section, straight 
major axis, non-parallel sides” and a cylinder as “curved cross section, straight major axis, 
parallel sides” makes explicit how a cone is similar to a cylinder and how they differ. 

Behaviorally, independence predicts that part shape attributes ought to be perceptually 
separable from one another and from the relations in which a part is engaged. Using Garner’s 
(1974) criteria, Saiki and Hummel (1998b, Experiment 3) showed that object parts are perceived 
independently of their spatial relations, and using a visual search paradigm, Arguin and Saumier 
(2005) also found evidence for independent coding of object parts and their spatial relations. 
Using a noise-masking paradigm, Stankiewicz (2002) showed that part attributes such as aspect 
ratio and axis curvature are represented independently of one another. Stankiewicz also showed 
that part shape is perceptually independent of viewpoint. As predicted by the structure-based 
account, these findings indicate that part attributes and their relations are represented explicitly 
and independently of one another. These findings are inconsistent with the view-based account’s 
prediction that all aspects of object shape should be perceptually integral with (i.e., non-
separable from) one another and with the viewpoint in which the object is depicted. 

Neurally, the independence implied by the structure-based account predicts that there 
ought to be neurons in visual cortex that respond to individual attributes of geons, independently 
of the geon’s other attributes. Kayaert, Biederman and Vogels (2005) report evidence for just 
such neurons in macaque inferotemporal cortex (specifically, in area TE). The same researchers 
also found that these neurons are more sensitive to changes in a geon’s non-accidental properties 
(e.g., a change from a straight to a curved major axis) than to otherwise equivalent (e.g., in terms 
of their impact on early visual representations in V1) metric changes in a geon’s shape (e.g., in 
the degree of curvature of the major axis). Similar findings of independence were reported by 
Tanaka (1993), Tsunoda et al. (2001) and Baker, Behrmann and Olson (2002) using different 
stimulus materials. 

 
The role of attention in shape perception and object recognition 
 
Representing visual properties independently of one another (i.e., analytically, rather than 

holistically) offers numerous advantages from a computational perspective (Hummel & 
Biederman, 1992), but it comes with a cost: If part attributes and relations are represented 
independently, then visual attention is necessary to ensure that they are bound together correctly 
(Hummel & Stankiewicz, 1996a; see also Treisman & Gelade, 1980; Treisman & Schmidt, 
1982). It is here that the structure-based account runs into difficulty. This account correctly 
predicts that attention ought to be necessary to generate a structural description of object shape 
(Stankiewicz, Hummel & Cooper, 1998; Stankiewicz & Hummel, 2002; Thoma, Davidoff & 
Hummel, 2007; Thoma, Hummel & Davidoff, 2004). However, it incorrectly predicts that, 
without the ability to generate a structural description, recognition of unattended objects should 
fail.  
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Evidence for the recognition of unattended objects comes in the form of both negative 
(Tipper, 1985; Treisman & DeSchepper, 1996) and positive (Stankiewicz et al., 1998; 
Stankiewicz & Hummel, 2002; Thoma et al., 2007; Thoma et al., 2004) priming for unattended 
shapes. (Negative priming is an increase in response times and/or error rates to recognize 
previously seen items; positive priming [typically called simply “priming”] is a decrease in 
response times and/or error rates to recognize previously seen items. Whether priming for 
ignored objects is negative or positive depends on the difficulty of the selection task, with 
difficult selection [e.g., naming the green object in a display depicting a green line drawing of 
one object overlaid on a red line drawing of another] leading to negative priming and easy 
selection [e.g., naming one of two spatially separated line drawings] leading to positive priming; 
see Stankiewicz et al., 2008.) Importantly, priming for ignored objects is not localized in low-
level retinotopic features (e.g., as represented in V1). Tipper (1985) showed that negative 
priming for ignored objects extends all the way to the level of meaning, and Stankiewicz and 
Hummel (2002) showed that, in contrast to the visual features represented in V1 and V2, positive 
priming for unattended objects in invariant with translation and scale. 

The view-based approach correctly predicts priming for unattended objects (since views 
are holistic, they do not depend on attention for binding; see Hummel & Stankiewicz, 1996a), 
but incorrectly predicts that the representation of an unattended shape should be the same as the 
representation of an attended shape. That is, whereas the structure-based account predicts too 
great a role for attention in object recognition (i.e., that recognition will fail completely in the 
absence of attention), the view-based account predicts too little. 

Stankiewicz, Thoma and their colleagues have shown that the visual representation of an 
attended object differs qualitatively from that of an unattended object. Whereas visual priming 
for both attended and unattended object images is invariant with translation across the visual 
field and changes in scale (Stankiewicz & Hummel, 2002), attended images visually prime their 
left-right reflections whereas ignored images do not (Stankiewicz et al., 1998). Similarly, visual 
priming for attended images is robust to configural distortions (as when an image is cut with a 
vertical line down the center and the left half is moved to the right and the right half to the left) 
whereas priming for ignored images is not (Thoma et al., 2004). Attended images also prime 
their inverted (i.e., upside-down) counterparts, whereas ignored images do not (Thoma et al., 
2007).  

The findings of Stankiewicz, Thoma and colleagues can be accommodated neither by the 
structural account nor by the view-based account. Indeed, they were predicted (and the 
experiments themselves motivated) by a hybrid model (Hummel & Stankiewicz’s, 1996, JIM2 
and Hummel’s, 2001, refinement, JIM3), whose development was a response to the strikingly 
complementary strengths and limitations of the structure- and view-based accounts. Hummel and 
Stankiewicz were motivated to develop JIM2 by the observation that structure-based models 
account for a large number of findings in the literature on object recognition and shape 
perception (as reviewed above), while at the same time being inconsistent with the automaticity 
and speed of object recognition. (Although not summarized above, object recognition is not only 
too automatic to be consistent with the structure-based approach, it is also too fast: At least for 
overlearned stimuli, object-sensitive neurons in macaque inferotemporal cortex will respond to 
their preferred stimulus in a feed-forward fashion [Tovee et al, 1993]—processing that is much 
too fast to depend on the dynamic binding necessary to generate a structural description 
[Hummel & Stankiewicz, 1996a].) 
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The resulting model is a hybrid that generates geon-and-relation-based structural 
descriptions of attended object images but which uses a holistic “surface map” (akin to a view-
based representation in the sense that features are represented at each of several locations in a 
reference frame, but at much lower spatial resolution than a view-based model and with more 
complex primitives than simple image features) to recognize familiar objects in familiar views 
rapidly and without the need for visual attention (see Hummel, 2001, for the most recent version 
of the model). In general, the model predicts that visual priming for attended images will reflect 
the properties of both the structured representation of shape and the holistic representation (both 
of which become active in response to an attended image), whereas priming for ignored images 
will reflect the properties of the holistic surface map only.  

More specifically, the model makes a complex set of predictions about the effects of 
attention and images changes on visual priming in an object recognition task (predictions that, at 
the time of its first publication in 1996, were untested). As reviewed above, the model predicts 
that: (a) priming for both attended and ignored images will be invariant with translation across 
the visual field and changes in scale (confirmed by Stankiewicz & Hummel, 2002); (b) attended 
images, but not ignored images, will visually prime their left-right reflections (confirmed by 
Stankiewicz et al., 1998); (c) attended images will prime configural distortions of themselves, 
but ignored images will not (confirmed by Thoma et al., 2004); and (d) attended images will 
prime inverted versions of themselves but ignored images will not (confirmed by Thoma et al., 
2007). 

 
Summary and Conclusions 
 

Human beings have large brains and roughly half of the human brain (or a bit more) is 
involved in one way or another in processing visual information. Given this, it is perhaps 
unsurprising that we are extremely good at visually recognizing objects. When we attend to an 
object we can visually segment it into its parts, perceive the attributes of those parts 
independently of one another and independently of the parts’ relations to one another, and 
perceive and reason about the relations among the parts. Armed with these relational 
representations, we can recognize familiar objects in novel viewpoints and recognize novel 
instances of known object classes. We can also reason about the attributes of an object, its parts 
and the relations among them, in the service of making judgments about whether the object 
would make, say, an appropriate doorstop, a useful weapon or a charming element in a modern 
sculpture to serve as a gift to our spouse on the occasion of our anniversary. All these abilities 
rely upon and reflect our capacity to represent objects relationally. Our relational representations 
of objects serve as a perceptual gateway to our ability to reason relationally about the world, 
which, in turn, sets us apart from all other primate species (and quite probably all other species). 

At the same time, if all we had were these relational representations, object recognition 
would be attention-demanding, labor-intensive, calorie-consuming and frustratingly slow, as we 
would have to attend to every object in our environment in order to recognize it. So we appear to 
have evolved a shortcut (or, in all likelihood, the “shortcut” evolved before the relational ability, 
so it is probably more accurate to say that we simply did not evolve away our shortcut): Familiar 
objects in familiar views can be recognized rapidly and automatically, freeing up our attentional 
resources to focus on more interesting matters. 
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Together, the automatic holistic route to recognition and the effortful relational one give 
us the best of both worlds: We can be as fast and automatic as a view-based model most of the 
time, and as smart as a structural description when we need to be. 

 
References 

 
Arguin, M. & Saumier, D. (2005). Independent processing of parts and of their spatial 

organisation in complex visual objects. Psychological Science, 15, 629-633. 
Baker, C., Behrmann, M., & Olson, C. (2002). Influence of visual discrimination training on the 

representation of parts and wholes in monkey inferotemporal cortex. Nature Neuroscience, 5, 
1210-1216. 

Biederman, I. (1987).  Recognition-by-components: A theory of human image understanding.  
Psychological Review, 94 (2), 115-147. 

Biederman, I., & Bar, M. (1999). One-shot viewpoint invariance in matching novel objects. 
Vision Research, 39, 2885-2899. 

Biederman, I., & Bar, M. (2000). Views on views: Response to Hayward & Tarr (2000). Vision 
Research, 40, 3901-3905. 

Biederman, I., & Ju, G. (1988). Surface versus edge-based determinants of visual recognition.  
Cognitive Psychology, 20, 38-64. 

Biederman, I., & Cooper, E. E. (1991a). Evidence for complete translational and reflectional 
invariance in visual object priming. Perception, 20, 585-593. 

Biederman, I., & Cooper, E. E. (1991b). Priming contour deleted images: Evidence for 
intermediate representations in visual object recognition.  Cognitive Psychology, 23, 393-
419. 

Biederman, I., & Cooper, E. E. (1992). Size invariance in visual object priming. Journal of 
Experimental Psychology: Human Perception and Performance, 18, 121-133. 

Biederman, I., & Gerhardstein, P. C. (1993). Recognizing depth-rotated objects: Evidence and 
conditions for 3D viewpoint invariance. Journal of Experimental Psychology: Human 
Perception and Performance, 19, 1162-1182. 

Biederman, I., & Gerhardstein, P. C. (1995). Viewpoint-dependent mechanisms in visual object 
recognition: A reply to Tarr & Bülthoff (1995). Journal of Experimental Psychology: Human 
Perception and Performance, 21, 1506-1514. 

Biederman, I. & Subramaniam, S. (1997). Predicting the shape similarity of objects without 
distinguishing viewpoint invariant properties (VIPs) or parts. Investigative Ophthalmology 
and Visual Science, 38, 998. 

Clowes, M. B. (1967).  Perception, picture processing and computers.  In N.L. Collins & D. 
Michie (Eds.), Machine Intelligence, (Vol 1, pp. 181-197).  Edinburgh, Scotland: Oliver & 
Boyd. 

Cooper, E. E., & Wojan, T. J.  (2000).  Differences in the coding of spatial relations in face 
identification and basic-level object recognition. Journal of Experimental Psychology: 
Learning, Memory, & Cognition, 26, 470-488. 

Dickinson, S. J., Pentland, A. P., & Rosenfeld, A. (1992). 3-D shape recovery using distributed 
aspect matching.  IEEE Transactions on Pattern Analysis and Machine Intelligence, 14, 174-
198. 

Edelman, S. & Poggio, T. (1991).  Bringing the grandmother back into the picture:  A memory-
based view of object recognition.  MIT A.I. Memo No. 1181.  April.   



	   17	  

Edelman, S. & Weinshall, D. (1991). A self-organizing multiple-view representation of 3-D 
objects.  Biological Cybernetics, 64,  209-219. 

Fukushima,  K. & Miyake, S. (1982). Neocognitron: A new algorithm for pattern recognition 
tolerant of deformations and shifts in position.  Pattern Recognition, 15, 455-469. 

Garner, W. R. (1974).  The processing of information and structure.  Hillsdale, NJ: Erlbaum. 
Goodale, M. A., Milner, D. A., Jakobson, L. S., & Carey, D. P.  (1991).  A neurological 

dissociation between perceiving objects and grasping them.  Nature, 349, 154-156. 
Holyoak, K. J., & Thagard, P. (1995).  Mental leaps: Analogy in creative thought.  Cambridge, 

MA: MIT Press. 
Hummel, J. E.  (2000).  Where view-based theories break down: The role of structure in shape 

perception and object recognition.  In E. Dietrich & A. Markman (Eds.).  Cognitive 
dynamics: Conceptual change in humans and machines (pp. 157 - 185).  Mahwah, NJ: 
Erlbaum. 

Hummel, J. E.  (2001).  Complementary solutions to the binding problem in vision: Implications 
for shape perception and object recognition.  Visual Cognition, 8, 489 - 517. 

Hummel, J. E.  (2003a).  Effective systematicity in, effective systematicity out: A reply to 
Edelman & Intrator (2003).  Cognitive Science, 27, 327-329. 

Hummel, J. E.  (2003b). The complementary properties of holistic and analytic representations of 
object shape.  In G. Rhodes and M. Peterson (Eds.), Perception of faces, objects, and scenes: 
Analytic and holistic processes (pp. 212-234).  Westport, CT: Greenwood. 

Hummel, J. E., & Biederman, I.  (1992). Dynamic binding in a neural network for shape 
recognition. Psychological Review, 99, 480-517. 

Hummel, J. E., & Holyoak, K. J. (1997).  Distributed representations of structure: A theory of 
analogical access and mapping.  Psychological Review, 104, 427-466. 

Hummel, J. E., & Holyoak, K. J.  (2003).  A symbolic-connectionist theory of relational 
inference and generalization.  Psychological Review, 110, 220-264. 

Hummel, J. E.,  & Stankiewicz, B. J. (1996a).  An architecture for rapid, hierarchical structural 
description.  In T. Inui and J. McClelland (Eds.). Attention and Performance XVI: 
Information Integration in Perception and Communication (pp. 93-121).  Cambridge, MA: 
MIT Press. 

Hummel, J. E.,  & Stankiewicz, B. J. (1996b).  Categorical relations in shape perception.  Spatial 
Vision, 10, 201-236. 

Hummel, J. E., & Stankiewicz, B. J.  (1998).  Two roles for attention in shape perception: A 
structural description model of visual scrutiny.  Visual Cognition, 5, 49-79. 

Liu Z, Knill D C, Kersten D (1995). Object classification for human & ideal observers. Vision 
Research 35: 549-568. 

Lowe, D. G. (1987). The viewpoint consistency constraint. International Journal of Computer 
Vision, 1, 57-72. 

Kayaert, G., Biederman, I., & Vogels, R. (2005). Representation of regular and irregular shapes 
in macaque inferotemporal cortex. Cerebral Cortex, 15, 1308-1321. 

Kayaert, G., Biederman, I., Op De Beeck, H., & Vogels, R. (2005). Tuning for shape dimensions 
in macaque inferior temporal cortex. European Journal of Neuroscience, 22, 212-224. 

Kobatake, E., & Tanaka, K. (1994). Neuronal selection to complex object features in the ventral 
visual pathway of the macaque visual cortex. Journal of Neuroscience, 71, 856-867. 

Köhler, W. (1940). Dynamics in psychology. New York: Liveright. 



	   18	  

Leek, E.C., Reppa, I. & Arguin, M. (2005). The structure of 3D object shape representations: 
Evidence from whole-part matching. Journal of Experimental Psychology: Human 
Perception and Performance, 31, 668-684. 

Logothetis, N. K., Pauls, J., Bülthoff, H. H., & Poggio, T. (1994). View-dependent object 
representation by monkeys. Current Biology, 4, 401-414. 

Mapelli, D. and Behrmann, M. (1997). The role of color in object recognition: Evidence from 
visual agnosia. NeuroCase, 3, 237-247. 

Marr, D. (1982).  Vision. Freeman: San Francisco. 
Marr, D., & Nishihara, H. K. (1978). Representation and recognition of three dimensional 

shapes.  Proceedings of the Royal Society of London, Series B. 200, 269-294. 
Olshausen, B. A., Anderson, C. H., & Van Essen, D. C. (1993). A neurobiological model of 

visual attention and invariant pattern recognition based on dynamic routing of information. 
Journal of Neuroscience, 13, 4700-4719. 

Op de Beeck, H., Beatse, E., Wagemans, J., Sunaert, S., & Van Hecke P. (2000). The 
representation of shape in the context of visual object categorization tasks. Neuroimage, 12, 
28 - 40. 

Palmer, S. E. (1978). Fundamental aspects of cognitive representation.  In E. Rosch and B. B. 
Lloyd (Eds.) Cognition and Categorization.  (pp. 259-303). Hillsdale, NJ: Lawrence 
Erlbaum.  

Palmer, S. E. (1999). Vision science: Photons to phenomenology.  Cambridge, MA: MIT Press. 
Penn, D. C., Holyoak, K. J., & Povinelli, D., J. (2008). Darwin’s mistake: Explaining the 

discontinuity between human and non-human minds. Behavioral and Brain Sciences, 31, 
109-178. 

Poggio, T. & Girosi, F.  (1990).  Regularization algorithms that are equivalent to multilayer 
networks.  Science, 277, 978-982. 

Rhodes, G. & Peterson, M. (2003). Perception of faces, objects, and scenes: Analytic and 
holistic processe.  Westport, CT: Greenwood. 

Rossion, B., & Pourtois, G. (2004). Revisiting Snodgrass and Vanderwart's object pictorial set: 
The role of surface detail in basic-level object recognition.  Perception, 33, 217-236. 

Saiki, J., & Hummel, J. E. (1996). Attribute conjunctions and the part configuration advantage in 
object category learning. Journal of Experimental Psychology: Learning, Memory, and 
Cognition, 22, 1002-1019. 

Saiki, J. & Hummel, J. E. (1998).  Connectedness and the integration of parts with relations in 
shape perception. Journal of Experimental Psychology: Human Perception and 
Performance, 24, 227-251. 

Stankiewicz, B.J. & Hummel, J.E. (2002) The role of attention in scale- and translation-invariant 
object recognition. Visual Cognition, 9, 719-739. 

Stankiewicz, B. J., Hummel, J. E., & Cooper, E. E.  (1998).  The role of attention in priming for 
left-right reflections of object images: Evidence for a dual representation of object shape.  
Journal of Experimental Psychology: Human Perception and Performance,  24, 732-744. 

Sutherland, N. S. (1968).  Outlines of a theory of visual pattern recognition in animals and man. 
Proceedings of the Royal Society of London (Series B), 171, 95-103. 

Tanaka, K. (1993). Neuronal mechanisms of object recognition. Science, 262, 685-688. 
Tarr, M. J., Bülthoff, H. H., Zabinski, M., & Blanz, V. (1997). To what extent do unique parts 

influence recognition across viewpoint? Psychological Science, 8, 282-289. 



	   19	  

Tarr, M. J., Williams, P., Hayward, W. G., & Gauthier, I. (1998). Three-dimensional object 
recognition is viewpoint dependent. Nature Neuroscience, 1, 275-277. 

Tipper, S. P. (1985).  The negative priming effect: Inhibitory effects of ignored primes.  
Quarterly Journal of Experimental Psychology, 37A, 571-590. 

Tovee, M. J., Rolls, E. T., Treves, A., & Bellis, R. P. (1993). Information encoding and the 
responses of individual neurons in the primate temporal visual cortex. Journal of 
Neurophysiology, 70, 640 – 654. 

Treisman, A. & DeSchepper, B. (1996).  Object tokens, attention, and visual memory.  In T. Inui 
and J. McClelland (Eds.), Attention and Performance XVI: Information Integration in 
Perception and Communication. (pp. 15-46).  Cambridge, MA: MIT Press. 

Treisman, A. & Gelade, G.   (1980).  A feature integration theory of attention.  Cognitive 
Psychology, 12, 97-136. 

Treisman, A.M. & Schmidt, H. (1982).  Illusory conjunctions in the perception of objects.  
Cognitive Psychology, 14, 107-141. 

Ullman, S. (1989). Aligning pictorial descriptions: An approach to object recognition. Cognition, 
32, 193-254. 

Ullman, S. & Basri, R. (1991). Recognition by linear combination of models. IEEE Transactions 
on Pattern Analysis and Machine Intelligence, 13, 992-1006. 

Wertheimer, M. (1924/1950).  Gestalt theory. In W. D. Ellis (Ed.), A sourcebook of Gestalt 
psychology (pp. 1-11). New York: The Humanities Press. 

 


