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Abstract

Theories of relational concept acquisition (e.g., schema induction) based on structured intersec-

tion discovery predict that relational concepts with a probabilistic (i.e., family resemblance) struc-

ture ought to be extremely difficult to learn. We report four experiments testing this prediction by

investigating conditions hypothesized to facilitate the learning of such categories. Experiment 1

showed that changing the task from a category-learning task to choosing the “winning” object in

each stimulus greatly facilitated participants’ ability to learn probabilistic relational categories.

Experiments 2 and 3 further investigated the mechanisms underlying this “who’s winning” effect.

Experiment 4 replicated and generalized the “who’s winning” effect with more natural stimuli.

Together, our findings suggest that people learn relational concepts by a process of intersection

discovery akin to schema induction, and that any task that encourages people to discover a higher

order relation that remains invariant over members of a category will facilitate the learning of

putatively probabilistic relational concepts.

Keywords: Relational category learning; Family resemblance; Higher order relations; Relational

invariants; Who’s winning task

1. Introduction

Relational concepts are concepts that specify the relations between things, rather than

just the literal features of those things. Such concepts play a central role in human cogni-

tion (Gentner, 1983; Holyoak & Thagard, 1995) and lie at the heart of our capacity for

language, mathematics, science, art, and almost everything else uniquely human (Penn,

Holyoak, & Povinelli, 2008). The acquisition of relational concepts also constitutes a

major component of human cognitive development (see Doumas, Hummel, & Sandhofer,

2008, for a review). By adulthood, the average person has mastered hundreds of relational

concepts (Asmuth & Gentner, 2005; Goldwater & Markman, 2011; Goldwater, Markman,

Correspondence should be sent to Wookyoung Jung, Department of Psychology, 603 E. Daniel St.,

Champaign, IL 61820. E-mail: jung43@illinois.edu



& Stilwell, 2011; Markman & Stilwell, 2001): We all know that a barrier is something

that stands between one thing and another; that a conduit is something that transports

something else (water, electricity, karma) from one place to another; that a friend is

someone who likes and is liked by another. Even a concept as simple as mother is

defined, not by any specific features, but by the relation between the mother and her child

(e.g., what features does a human mother share with, say, a mother tarantula? see Mark-

man & Stilwell, 2001). As common and seemingly simple as these concepts are, they are

in fact all quite abstract: A barrier can be a piece of concrete, a chasm, or even a per-

son’s race or attitudes.

Given the importance of relational concepts in human mental life, an important ques-

tion is how such concepts are acquired: How do we come to know what a barrier is, or

what larger-than means? This question is complicated by the fact that, at least by adult-

hood, many of our relational concepts are largely independent of (i.e., invariant with)

their arguments (Doumas et al., 2008; Hummel & Holyoak, 1997, 2003): We understand

that larger-than means the same thing in the statement “Jupiter is larger than Saturn” as

in the statement “The nucleus of an atom is larger than the electrons,” even though Jupi-

ter and Saturn are very different than atomic nuclei and electrons. And we know that a

barrier is, in some abstract sense, the same whether it is a concrete structure that impedes

the flow of traffic on a road, or a person’s inability to afford tuition at an elite university.

This kind of argument-invariance poses a difficulty for acquiring relational concepts

because, although we eventually come to understand relations as distinct from their

arguments, we never actually get to experience relations disembodied from their argu-

ments: No one has ever seen an instance of larger-than without some specific thing

that was larger than some specific other thing. The argument-invariance of relational

concepts poses a problem for learning because it implies that associative learning is

formally too weak to explain the acquisition of relational concepts (Chomsky, 1959;

see also Doumas et al., 2008; Hummel, 2010; Hummel & Holyoak, 1997, 2003), a

fact that may help to explain why, of all the primate species, humans appear to be

the only one to acquire them (Penn et al., 2008). Transitive inference-like behavior

has been observed in non-human animals and has been cited as an instance of rela-

tional thinking in these animals (see, e.g., Lazareva, 2012). For example, trained to

choose stimulus A over B and B over C, many animals will spontaneously choose A

over C. Inasmuch as this kind of behavior depends on explicitly relational thinking, it

would appear to be a counterexample to the claim that associative mechanisms are

inadequate for relational learning. However, the examples of transitive inference that

have been observed in non-human animals can be understood—and have been mod-

eled (see, e.g., McGonigle & Chalmers, 2001)—as instances of straightforward asso-

ciative generalization (see also Hummel & Holyoak, 2001).

In response to the inadequacy of associative learning to explain the acquisition of rela-

tional concepts, some researchers have proposed that relational concepts, including both

full-blown schemas (e.g., Gick & Holyoak, 1983; Hummel & Holyoak, 2003) and indi-

vidual relations, such as larger-than (e.g., Doumas et al., 2008), are learned by a process

of structured intersection discovery. The basic idea is that two situations are structurally
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aligned, making the correspondences between their parts explicit (Doumas et al., 2008;

Gentner, 1983; Gick & Holyoak, 1980, 1983; Hummel & Holyoak, 2003). For example,

in the case of the barrier concept, one may observe that some person has a goal (to get

from point A to point B along a road, or to attend an elite university), which is thwarted

by some external reality (a concrete structure between A and B, or an inability to afford

tuition at the university), and notice the analogy between them (mapping the traveler onto

the hopeful university student, point B along to the road to the elite university, and the

concrete structure onto the hopeful student’s economic reality), and inducing a schema by

retaining the intersection of the two examples: In this case, that some person has some

goal that is thwarted by some external reality.

Structural alignment is more powerful than associative learning because it reveals—
and depends on—relational matches rather than simple featural matches.1 In the previous

example, the hopeful student’s financial reality shares no literal features with the concrete

structure blocking the traveler’s transit from A to B. Instead, they correspond to one

another only by virtue of their shared roles with respect to the actors’ goals. Because it

relies on the machinery of structural alignment, learning by intersection discovery is

equipped to support inferences that extend beyond the statistical regularities of the fea-

tures of involved in the examples (see Doumas et al., 2008; Gentner, 1983; Hummel &

Holyoak, 2003).

In contrast to relational concepts, which are too complex to learn as simple associa-

tions, featural concepts (i.e., concepts defined by their exemplars’ features, rather than by

relations) can be learned associatively. For example, if members of category X tend to

have features A1, B1, and C1, whereas members of category Y tend to have features A2,

B2, and C2, then it is possible to discriminate Xs from Ys simply by learning associative

links (e.g., weighted connections in a connectionist network, or associative links as

learned by the Rescorla–Wagner [1973] model) from A1, B1, and C1 to X and from A2,

B2, and C2 to Y. That is, there is a good reason to believe that relational and featural

concepts require very different learning algorithms: Intersection discovery (or some other

algorithm that exploits the machinery of structure mapping) in the case of relational con-

cepts versus simple association in the case of featural concepts (see also Doumas et al.,

2008; Hummel, 2010; Hummel & Holyoak, 2003).

To the extent that different learning algorithms underlie the learning of relational and

featural concepts, then conclusions drawn from experiments on one kind of category

learning may not necessarily apply to the other kind. One of the most robust and replica-

ble conclusions from the literature on category learning from the 1970s to the present

(e.g., Kruschke, 1992; Kruschke & Johansen, 1999; Markman & Maddox, 2003; Minda

& Smith, 2011; Rosch & Mervis, 1975; Shiffrin & Styvers, 1997; Smith & Medin, 1981)

is that people easily learn categories with a family resemblance, that is, probabilistic
structure. In a category with a family resemblance structure, there is no single feature

shared by all members of the category. Rather, features tend to occur probabilistically,

and “good” members of the category (i.e., members closer to the prototype) tend to have

more features in common with other members of the category than “bad” members. The

observation that people easily learn categories with a family resemblance structure leads
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naturally to the conclusion that our natural concepts also have a family resemblance

structure, as famously suggested by Wittgenstein (1953).

However, as observed by Kittur and colleagues (Kittur, Holyoak, & Hummel, 2006;

Kittur, Hummel, & Holyoak, 2004), one limitation of this conclusion is that all the exper-

iments demonstrating our ability to learn probabilistic category structures were performed

using feature-based categories. If feature-based categories are learned associatively, then

they should be easily learnable even if they have a probabilistic structure (provided the

features are sufficiently predictive of category membership). But if relational categories

resist learning by association2—and in particular, if they are learned by a process akin to

structured intersection discovery—then they should not be learnable when they have a

family resemblance structure: If there is no relation that all members of a relational cate-

gory have in common, then the intersection of the category’s exemplars will be the empty

set. That is, the intersection-discovery theory of relational learning predicts that probabi-

listic relational categories ought to be (virtually) unlearnable. In several experiments,

Kittur and colleagues demonstrated that, indeed, they appear to be.

In their first experiment, Kittur et al. (2004) used a two-by-two design, crossing featur-

ally versus relationally defined categories with probabilistic versus deterministic struc-

tures. They found that, although participants had no difficulty learning deterministic

structures, whether they were featural or relational, and had no difficulty learning featural

categories, whether they were deterministic or probabilistic, they had great difficulty

learning probabilistic relational categories. Indeed, roughly half of their participants never

reached criterion even after 600 trials of exposure to the category members. Kittur and

colleagues concluded that participants in the relational conditions used a form of intersec-

tion discovery to learn the categories, and that this strategy failed catastrophically when

the categories had a probabilistic structure.

Although Kittur et al.’s (2004) conclusion is consistent with their findings, it remains

possible that relational categories are simply harder to learn than featural ones and that

probabilistic categories are harder to learn than deterministic ones and that, put together,

these two sources of difficulty interact to make probabilistic relational categories espe-

cially difficult. That is, perhaps people learn featural and relational structures in the very

same way(s), but relational structures are simply harder to acquire (but see Tomlinson &

Love, 2010; Goldwater & Markman, 2011; Goldwater et al., 2011).

However, the prior literature on relational category learning suggests that this simple

conjunction of two difficulties account may not be correct. In particular, consistent with

the intersection discovery account, this literature suggests that relational category learning

might be characterized by an attempt to discover an invariant that unifies members of a

relational category. Murphy and Allopenna (1994) and Rehder and Ross (2001) showed

that category structures that map onto learner’s existing schemas are easier to acquire

than those that do not. It is possible that this mapping supplies an invariant that unifies

members of the relational category. Similarly, theory-based categories (e.g., Ahn & Luh-

mann, 2004; Carey, 1985; Gelman, 2003; Heit, 1994; Keil, Smith, Simons, & Levin,

1998; Medin, 1989; Murphy & Medin, 1985; Rehder, 2003)—a variety of relational cate-

gory—often have the property that their members may lack any obvious first-order
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similarities but are united by virtue of conforming to a higher order relational (often

goal-based) schema. For example, the members of Barsalou’s (1983) ad hoc category

items to take out of a house during a fire share few or no obvious features but are instead

united primarily by their joint membership in the category. A man who jumps fully

clothed into the pool at a party may be categorized as drunk even if he shares no obvious

first-order features with other drunk people (Murphy & Medin, 1985). And Rehder and

Ross (2001) showed that categories that are rendered coherent by virtue of their members

sharing an unstated higher order relation (namely, that their stated first-order properties

work together to achieve a goal) are easier to learn than those that are not. Accordingly,

we reasoned that, faced with the task of learning probabilistic relational categories, any-

thing that encourages the learner to discover a higher order relation that remains invariant

over members of a category—effectively rendering the category deterministic—ought to

substantially facilitate learning.

In Experiments 1–3, participants learned categories of simple “objects,” each composed

of a circle and a square. (Experiment 4 used artificial “cells” rather than circles and

squares, but the category structures were isomorphic to those used in Experiments 1–3.)
Following Kittur et al., the categories were relational in the sense that category member-

ship was determined by the relative size, darkness, and locations of the circle and square:

In the prototype of category A, the circle was larger, darker, above, and in-front of the
square; in the prototype of B, the circle was smaller, lighter, below, and behind the

square (see Fig. 1). Each exemplar of A and B shared three relations with its own proto-

type and one with the prototype of the opposite category (e.g., one exemplar of A had a

circle that was larger, darker, above, and behind the square). The categories were proba-

bilistic in the sense that there was no single relation that remained invariant over all

exemplars of a category. Although these stimuli lack ecological validity, the use of highly

abstract stimuli in studies of category learning has a long and distinguished history, going

back at least as far as Bruner, Goodnow, and Austin (1956) and extending at least as

recently as Tomlinson and Love (2010), spanning every year in between. In addition,

Experiment 4 replicated Experiments 1–3 using more natural “cell” stimuli, and Jung and

Hummel (2011) conducted very similar experiments with more natural “insect” stimuli.

Although none of the relevant first-order relations remained invariant over all exemp-

lars of a category, there is an unstated higher order relation that does remain invariant

over the members of a category. Specifically, in all members of category A, the circle

will stand in three out of four of the relations larger, darker, above, and in-front with
respect to the square; in all members of B, the square will stand in three out of the four

relations larger, darker, above, and in-front with respect to the circle. By analogy to a

game, if being larger gets a shape a “point,” being darker gets a point, being above gets

a point, and being in-front gets a point, then in all members of category A, the circle is

“winning” (with three out of the four possible “points”) and in all members of B, the

square is “winning.” Whether the circle or square is “winning” could thus serve as a

higher order (in the sense that it is a relation defined over other relations) invariant that

remains true of all members of a category, and which serves to distinguish, deterministi-

cally, members of one category from members of the other. As such, we hypothesized
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that by changing the task from “learn which exemplars belong to A versus B” to “learn

whether the circle or square is winning,” we might render otherwise identical category

structures learnable.

We report four experiments testing and supporting this hypothesis.

2. Experiment 1

Experiment 1 served as an initial investigation of the schema induction hypothesis,

along with two alternative hypotheses about what might make probabilistic relational cat-

egories difficult to learn. The first alternative hypothesis is that participants may simply

be biased against learning relational categories. As a test of this hypothesis, Experiment

1a manipulated, between subjects, how explicit the instructions were about the fact that

the categories were relational. One group of participants was explicitly informed that the

categories were defined in terms of whether the circle or square was larger, darker,
above, or in front of the square, or vice versa3; in the other condition, the relations were

not explicitly named in the instructions and participants were not informed that the rela-

tions between the circle and square (as opposed, say, to their literal features) were rele-

vant to category membership.

The second hypothesis we tested was that, rather than being unable to learn relational

categories with a family resemblance structure, people are simply biased against assum-

ing that relational categories will have a family resemblance structure. That is, faced with

relational categories, perhaps people simply assume that those categories will have some

defining (i.e., deterministic; invariant) relation—for example, an essence (see Gelman,

2000, 2004; Keil, 1989; Medin & Ortony, 1989) that is shared by all members of the

Fig. 1. Exemplars of category A and B used in Experiments 1–3. Exemplars of each category were made by

switching the value of one relation in the prototype.
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category—and that this assumption caused Kittur et al.’s participants to adopt a suboptimal

learning strategy. To test this hypothesis, Experiment 1a also varied whether participants

were informed about the probabilistic category structure. Participants in the clue condition

were explicitly informed that no single property would always work as the basis for catego-

rizing the exemplars. Participants in the no clue condition were given no such clue. To the

extent that participants are biased against assuming a family resemblance category structure,

given relational categories, providing this clue should help them to adopt a more appropriate

learning strategy, especially when the relations were also named.

Finally, to test the hypothesis that relational categories are learned by a process akin to

schema induction, Experiment 1a manipulated participants’ nominal learning task. Partici-

pants in the category-learning condition were instructed to learn whether each exemplar

belongs to category A or B; those in the “who’s winning” condition were instructed to

press the A key “if the circle is winning” or to press the B key “if the square is winning.”

Aside from these differences in the instructions, the stimulus-response mappings were

identical across all conditions. That is, any stimulus in which the circle is “winning” also

belongs to category A and any stimulus in which the square is winning belongs to B.

Although it may seem odd or ecologically invalid to ask participants to learn whether a

circle or a square is “winning,” that this task is learnable is revealed by our data; and

what is more important than its ecological validity is the question of whether it is more
learnable than “does this stimulus belong to A or B?”: Natural or not, the intersection dis-

covery hypothesis predicts that it will be. These three variables—relations named versus

not, clue provided versus not, and category learning versus “who’s winning” task—were

manipulated orthogonally, resulting in a total of eight experimental conditions.

Finally, one potential explanation of the difficulty participants had learning Kittur

et al.’s probabilistic relational categories concerns the nature of the relations themselves.

Many or most relational concepts are defined by between-object relations—that is, the

relations between the categorized object and some other object(s): A mother is the mother

of a child; a barrier blocks the path between a second object and a third; and a conduit

carries a second object from a third object (or location) to a fourth. By contrast, the cate-

gories used by Kittur and colleagues, and in most of the experiments reported here, are

defined by within-object relations—relations between the parts of a single category mem-

ber. Perhaps it is simply unnatural for participants to learn (especially probabilistic) cate-

gories based on within-object relations (but see, e.g., Biederman, 1987; Hummel, 2001;

Hummel & Biederman, 1992; Marr, 1982; Saiki & Hummel, 1996, on the importance of

within-object relations in object categorization). Experiment 1b tested whether probabilis-

tic relational categories are more learnable when the relevant relations are defined

between rather than within the to-be categorized objects.

2.1. Experiment 1a

2.1.1. Method
2.1.1.1. Participants: A total of 153 participants participated in the study for course

credit. Each participant was randomly assigned to one of the eight conditions.
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2.1.1.2. Materials: Each trial presented a single exemplar consisting of a gray circle and

a gray square in the middle of the computer screen (although both figures were gray, they

could be darker or lighter shades of gray). The properties of the exemplars were deter-

mined by a family resemblance category structure defined over the relevant first-order

relations. The prototypes of the categories were defined as [1,1,1,1] for category A and

[0,0,0,0] for B, where [1,1,1,1] represents a circle larger, darker, on top of, and in front
of a square and [0,0,0,0] represents a circle smaller, lighter, below, and behind a square.

Exemplars of each category were made by switching the value of one relation in the pro-

totype (e.g., category A exemplar [1,1,1,0] would have the circle larger, darker, on top
of, and behind the square). Two variants of each logical structure were constructed by

varying the metric properties size and darkness, respecting the categorical relations larger
and darker, resulting in eight exemplars per category.

2.1.1.3. Design: The experiment used a 2 (relations named vs. not named) 9 2 (clue vs.

no clue) 9 2 (categorize vs. who’s winning task) between-subjects design.

2.1.1.4. Procedure: Participants were first given instructions to categorize the stimuli

(categorize condition) or decide whether the circle or square was winning (who’s winning
task), which either named the relevant relations (relations named) or not (not named) and
either provided the “no single property will always work” clue (clue condition) or not (no
clue). After the instructions, the procedure was identical across all conditions. Trials were

presented in blocks of 16, with each exemplar presented in a random order once per

block. In the categorize condition, participants were instructed to press the A key if the

stimulus belonged to category A or the B key if it belonged to B; in the who’s winning
condition, they were instructed to press A if the circle was winning and B if the square

was winning (i.e., the stimulus-response mapping was identical across tasks, since in all

members of A the circle “wins” and in all members of B the square “wins”). Each exem-

plar remained on the screen until the participant responded. Responses were followed by

presentation of the correct category label or winning shape. The experiment consisted of

60 blocks (960 trials) and continued until the participant responded correctly on at least

14 of 16 trials (87.5% correct) for two consecutive blocks or until all 60 blocks had tran-

spired, whichever came first. At the end of the experiment participants were queried

about the strategies they had used during the experiment.

2.1.2. Results
2.1.2.1. Trials to criterion: Since our primary interest is the rate at which participants

learn the categories, we report our data first in terms of trials to criterion. These analyses

are biased against our hypotheses in the sense that participants who never learned the cri-

terion were treated as though they had reached criterion on the last block. Fig. 2 shows

the mean trials to criterion by condition. A 2 (relations named vs. not named) 9 2 (clue
vs. no clue) 9 2 (categorize vs. who’s winning) between-subjects ANOVA revealed a main

effect of task—F(1, 145) = 25.826, MSE = 2,267,729, p < .001, reflecting the fact that

participants took reliably fewer trials to reach criterion in the who’s winning condition
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(M = 211, SD = 261) than in the categorize condition (M = 453, SD = 339). No other

main effects were statistically reliable. However, there was a reliable interaction between

relations named and clue,—F(1, 145) = 5.98, MSE = 525,066, p < .05, indicating that

the effect of providing the clue was more pronounced for relation not named (M = 291,

SD = 243) than for relations named (M = 392, SD = 297). Finally, there was a reliable

three-way interaction between relations named, clue, and task—F(1, 145) = 4.10,

MSE = 359,946, p < .05. As shown in Fig. 2, relation naming interacted with the clue

differently across the two tasks. With the who’s winning task, the effect of the clue

(M = 180, SD = 219) was roughly equivalent to the effect of naming the relations

(M = 182, SD = 250), with each reducing trials to criterion relative to providing no clue

(M = 244, SD = 301) or relations not named (M = 242, SD = 271). By contrast, for par-

ticipants given the categorize task, naming the relations without providing the clue

(M = 315, SD = 258) and providing the clue without naming the relations (M = 382,

SD = 261) were both beneficial relative to doing neither (M = 503, SD = 376), although

these trends did not reach statistical reliability in our sample, t(41) = 1.912, p = .063 for

relations named without the clue, t(38) = 1.157, p = .254 for relations not named with

the clue). However, both naming the relations and providing the clue together did not

facilitate category learning (M = 623, SD = 381), and in fact impaired learning relative

to either naming the relations—t(37) = �2.999, p < .01, or providing the clue in isola-

tion, t(34) = �2.214, p < .05.

Of particular interest is the fact that the condition that gave rise to the worst perfor-

mance with the categorize task (and overall)—specifically, relations named and clue, with
only 50% of participants learning to criterion (and a mean of 623 trials to criterion)—
gave rise to the best performance with the who’s winning task (and overall), with 95% of

participants learning to criterion (and a mean of 160 trials to criterion). We address the

possible reasons for this effect in the Discussion.
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Fig. 2. Mean trials to criterion in the categorize (left) and who’s winning (right) conditions in Experiment

1a. Error bars represent standard errors.
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2.1.2.2. Response times: We analyzed response times on individual trials in order to gain

insight about the strategies participants in categorize and who’s winning may have

adopted. There was a reliable main effect of task—F(1, 145) = 11.280, MSE = 12.548,

p < .01. Response times in the categorize condition (M = 2.17, SD = 1.12) were reliably

shorter than in the who’s winning condition (M = 2.75, SD = 1.06). The interaction

between task and clue was reliable—F(1, 145) = 3.955, MSE = 4.400, p < .05, such that

for the categorize condition, providing the clue (M = 2.00, SD = 0.94) made response

times shorter than providing no clue (M = 2.32, SD = 1.26)—t(77) = 1.245, p = .217,

whereas for the who’s winning condition, providing the clue (M = 2.93, SD = 1.09) made

response times longer than providing no clue (M = 2.57, SD = 1.02)—t(72) = �1.465,

p = .147. Finally, there was a reliable three-way interaction between relations named,
clue, and task—F(1, 145) = 9.522, MSE = 10.593, p < .01. As shown in Fig. 3, relation

naming interacted with the clue differently across the two tasks. With the categorize task,

the pattern of response times is the complement of the pattern of accuracy: Response

times were numerically slowest when the relations were named and the clue was not

given (M = 2.67, SD = 1.49) and numerically fastest when the relations were named and

the clue was given (M = 1.65, SD = 0.90); response times fell in between, albeit with the

reversed pattern, when the relations were not named. In contrast, for participants given

the who’s winning task, naming the relations and providing the clue produced the longest

response times (M = 3.31, SD = 1.27). Without naming the relations, response times were

equivalent regardless of providing the clue (M = 2.55, SD = 0.72 with the clue,

M = 2.54, SD = 1.04 without the clue). Thus, with the who’s winning task, as with the

categorize task, the pattern of trial-by-trial response times is roughly the complement of

the pattern of trials to criterion.

As elaborated in the Discussion, these data suggest that participants in the former con-

dition were attempting to categorize the stimuli based on their features, whereas those in
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Fig. 3. Mean response times in the categorize (left) and who’s winning (right) conditions in Experiment 1a.
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the latter were attending to the exemplars’ relations, including, potentially, higher order

relations.

2.2. Experiment 1b

Like the experiments of Kittur and colleagues, Experiment 1a required participants to

learn categories defined by the relations between the parts of a single object (i.e., within-
object relations). That is, the circle and square were described to participants as parts of

a single object, whose spatial relations were relevant to category membership. By

contrast, many relational categories, including role-governed categories (Markman &

Stilwell, 2001), are defined by between-object relations—relations between the to-be-

categorized object and some other object(s) (e.g., mother, barrier, friend, etc.). Experi-
ment 1b served as a test of whether this within- versus between-object distinction might

account for the difficulty participants had learning the relational categories in the catego-

rize conditions of Experiment 1a. Specifically, Experiment 1b explored whether probabi-

listic relational categories are easier to learn when the relevant relations are defined

between- rather than within-objects. In the within-object condition of this experiment,

participants, like those in Experiment 1a, were told they were learning to categorize

objects composed of two parts (a circle and a square), where the spatial relations between

the parts were relevant to category membership. In the between-object condition of this

experiment, participants were instructed to categorize either the circle or the square

(counterbalanced) in terms of its relations to the other object (i.e., square or circle,

respectively). That is, participants in the between-object condition were encouraged to

regard the circle and square as separate objects, and thus the relevant relations as

between-object relations.

2.2.1. Method
2.2.1.1. Participants: Forty eight undergraduates participated in the experiment for

course credit. Each participant was randomly assigned to one of the three conditions.

2.2.1.2. Materials: The stimuli were the same as those used in Experiment 1a.

2.2.1.3. Procedure: Participants were randomly assigned to one of three conditions:

Within-object, in which their task was to categorize the circle-and-square stimulus as a

single object; between-objects, in which their task was to categorize either the circle or

the square (counterbalanced) based on its relations to the other object; and who’s win-

ning. The procedure was otherwise identical to the relations named and clue given condi-

tion of Experiment 1a.

2.2.2. Results
2.2.2.1. Trials to criterion: Fig. 4 shows trials to criterion as a function of condition. A

3 (within-object vs. between-object vs. who’s winning) between-subjects design ANOVA

revealed a main effect of task—F(2, 45) = 8.867, MSE = 80,740.622, p < .01. Participants
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in who’s winning (M = 137, SD = 147) reached criterion in fewer trials than in within-
object (M = 450, SD = 319; by Tukey’s HSD, p < .01) and between-object (M = 540,

SD = 345; by Tukey’s HSD, p < .01). There was no reliable difference between perfor-

mances in the within- and between-object conditions (by Tukey’s HSD, p < .646).

2.2.2.2. Response times: As in Experiment 1a, we analyzed response times on individ-

ual trials (Fig. 5). There was a reliable effect of task—F(2, 44) = 14.524,

MSE = 22.712, p < .001, such that RTs in who’s winning (M = 3.55, SD = 2.04) were

reliably longer than in both within-object (M = 1.55, SD = 0.42; by Tukey’s HSD,

p < .001) and between-object (M = 1.43, SD = 0.60; by Tukey’s HSD, p < .001). There
was no reliable different between within-object and between-object (by Tukey’s HSD,
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p = .964). Experiment 1b thus showed a speed-accuracy trade-off similar to that

observed in Experiment 1a.

2.2.3. Discussion
The results of Experiment 1 showed that recasting category learning as a “who’s win-

ning” task substantially improved participants’ ability to learn probabilistic relational cat-

egories. Experiment 1a showed that, for participants given the “who’s winning” task,

other factors that might sensibly be expected to improve learning—specifically, naming

the relevant relations and informing participants that no single relation will work every

time—seemed to improve performance (although not all these trends were statistically

reliable in our data). Surprisingly, when combined, these factors did not improve the

learning of participants charged with the (formally equivalent) task of categorizing the

stimuli: Although each factor individually seemed to improve learning of our probabilistic

relational categories, when combined they impaired learning.

The reasons for this trend are not entirely clear, but it is consistent with the pattern

that would be expected if participants in the categorize, relations named, and clue condi-

tion of Experiment 1a were attempting to categorize the exemplars based on their features

rather than the relations between the circle and square. This conclusion is supported by

the fact that response times were fastest in the categorize, relations named, and clue con-

dition (1.65 s per trial) and slowest in the who’s winning, relations named, and clue con-

dition (3.31 s per trial). Inasmuch as features can be perceived and encoded faster than

relations, response times on individual trials are expected to be faster for participants

who are responding to features than for those who are responding to relations. A post hoc

analysis of participants’ end-of-experiment self-reports also supports this conclusion: Par-

ticipants in the relations named, clue, and categorize condition named stimulus features

(e.g., “dark,” “large,” “grey,” etc.) rather than dimensions (“darkness,” “size,” “place-

ment”) or relations (“darker,” “larger,” “in front”) more often than participants in any of

the other conditions (19 times vs. a mean of 8.29 times [SD = 4.39] across the other con-

ditions).

These patterns suggest that participants in Experiment 1a’s categorize, relations
named, and clue condition may have abandoned the use of the stated first-order relations

(larger, darker, above, and in front) as the basis for categorization and, rather than dis-

covering a useful higher order relation, simply retreated to a strategy based on the ex-

emplars’ features. At the same time, however, it remains unclear why only the

participants in this condition would resort to this maladaptive strategy. Perhaps being told

what the relevant relations were, in combination with the clue that no single one of them

would work every time, had the counterproductive effect of helping these participants

know which relations to ignore in their categorizations. In other words, upon being told

that a deterministic relational learning strategy wound not work, rather than abandoning

their assumption that relational categories should be deterministic, these participants may

instead have abandoned the idea that they were relational.

Experiment 1b investigated whether the results of Experiment 1a, and those of Kittur

and colleagues, can be attributed to the fact that our stimuli, like those of Kittur et al.,
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defined the object categories in terms of within- rather than between-object relations and

showed that this variable had little or no effect on participants’ ability to learn the catego-

ries (in fact, learning was numerically worse in the between- than within-object condition

of this experiment). Together, the results of Experiment 1 suggest that relational catego-

ries are learnable only if category members possess one or more relations that remain

invariant across members of a category or if, like the “who’s winning” condition of

Experiment 1, the category-learning task is structured in a way that makes it possible to

discover an invariant higher-order relation.

Experiment 2 further investigated the nature of this “who’s winning” effect by compar-

ing learning in the “who’s winning” task to learning in related tasks. Our second study

also provided an opportunity to replicate the basic findings of Experiment 1.

3. Experiment 2

The most striking result of Experiment 1 was the main effect of who’s winning versus

categorize. Accordingly, Experiment 2 sought to further elucidate the reasons for this

effect. Experiment 2 tested two not-mutually-exclusive hypotheses about how the who’s
winning task facilitates learning of probabilistic relational categories: the comparison
hypothesis and the specific role of the winning schema itself.

Our first hypothesis was that the who’s winning task might facilitate learning simply

by encouraging participants to compare the circle and square in some manner that the cat-

egory-learning task does not. For example, perhaps participants in the who’s winning con-

dition represented the circle and square as separate objects and doing so facilitated

learning by encouraging them to compare them to one another. Although this interpreta-

tion is challenged by the results of Experiment 1b, it remains possible that explicitly

labeling the circle–square relation (i.e., as a winning/losing) in “who’s winning” facili-

tated discovery of that relation in a way that simply categorizing the figures as separate

objects in the between-object task of Experiment 1b did not. On this account, any task

that encourages participants to learn a relation between the circle and square ought to

facilitate learning, whether the to-be-learned relation has any prior meaning or not. For

example, asking participants “who’s daxier?” should encourage the same kind of compar-

ison as “who’s winning.” If it is the comparison process that is responsible for the “who’s

winning” effect, then the “who’s daxier” task should result in a comparable improvement

(relative to categorization) to “who’s winning.” But to the extent that the “who’s win-

ning” task facilitates performance in part by invoking reasoning schemas for winning/

competition, then “who’s daxier” may facilitate performance relative to the categorize

task, but it ought not facilitate it as much as “who’s winning” does.

Our second hypothesis was that a schema for what “winning” consists of may facilitate

learning by encouraging participants to count the number of “winning” roles (i.e.,

“points”) bound to the circle and the square and to declare whichever part has more win-

ning roles the winner. On this account, the effect of “who’s winning” reflects the opera-

tion of the “winning” schema, per se, rather than simply the effect of comparisons
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encouraged by instructions that require participants to discover relations between the cir-

cle and square.

Where these hypotheses make divergent predictions is in the potential role of con-
sistent versus mixed role assignment in the effect. The instructions refer to the rele-

vant relations by naming one role of each relation: Participants are told that one

shape will be darker, one will be larger, one will be above, and one will be in front.
Implied, but not stated, is that therefore, one will be lighter, one smaller, one below,
and one behind. In Experiment 1, the assignment of relational roles to categories was

consistent, in the sense that all the roles named in the instructions were assigned to

the circle in category A (with the unnamed roles assigned to the square) and all the

roles not named in the instructions were assigned to the circle in category B (with

the named roles assigned to the square). Perhaps naming darker, larger, above, and in
front somehow marks them as the “winning” roles, leaving lighter, smaller, below,
and behind to be the “losing” roles. If so, then to the extent that the facilitatory

effect of the winning task is due to the involvement of a “winning” schema, per se,

then having all the named roles consistently assigned to a single shape within a cate-

gory (as in Experiment 1) ought to lead to faster learning than having half the win-

ning roles assigned to one shape and half to the other in each category. By contrast,

to the extent that the effect of “who’s winning” simply reflects the role of compari-

son, then consistent versus mixed role assignment should make little difference to the

rate of learning. A third possibility, of course, is that both hypotheses are correct, in

which case we would expect to see facilitatory effects of both comparison (i.e.,

“who’s daxier?” or “who’s winning?” vs. “what category?”) and, in the case of

“who’s winning?”, an additional effect of consistent versus mixed role assignment.

Experiment 2 tested both hypotheses by orthogonally crossing task (categorize vs.

who’s daxier vs. who’s winning) with role assignment (consistent vs. mixed). In all other

respects, Experiment 2 was an exact replication of the conditions in Experiment 1 in

which participants were informed of what the relevant relations were and that no single

relation would work every time.

3.1. Method

3.1.1. Participants
Participants were 105 undergraduates who participated for course credit. Each partici-

pant was randomly assigned to one of the six conditions.

3.1.2. Materials
There were two types of stimuli: In the consistent role assignment condition, the proto-

types were identical to those of Experiment 1. In the mixed role assignment condition,
the named roles were mixed across the two shapes within the members of A and B (cate-
gorize condition), the “daxier” shape (daxier condition) or the “winning” shape (winning
condition). The precise mixing of roles was counterbalanced: In one case, the circle in

the category A/“daxier”/“winning” prototype was larger, lighter, below, and in front; in
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the other it was smaller, darker, above, and behind (where larger, darker, above, and in
front were named in the instructions and were thus presumably the “winning” roles).

3.1.3. Design
The experiment used a 3 (categorize vs. who’s daxier vs. who’s winning task) 9

2 (consistent vs. mixed role assignment) between-subjects design.

3.1.4. Procedure
The procedure was identical to that of Experiment 1. Participants were first instructed

to categorize the stimuli (categorize condition), decide whether the circle or square was

daxier (who’s daxier condition), or decide whether the circle or square was winning

(who’s winning condition). All instructions named the relevant relations and gave the “no

single property will always work” clue.

3.2. Results

3.2.1. Trials to criterion
The analyses of trials to criterion are conservative in the same sense as in Experiment

1. The trials to criterion data are shown in Fig. 6. A 3 (categorize vs. daxier vs. win-
ning) 9 2 (consistent vs. mixed) between-subjects design ANOVA revealed a main effect of

task—F(2, 99) = 11.352, MSE = 1,158,433, p < .001. As in Experiment 1, participants

reached criterion in fewer trials in the who’s winning task (M = 330, SD = 342) than in

the categorize task (M = 699, SD = 317; by Tukey’s HSD, p < .01). Participants given

the who’s daxier task (M = 492, SD = 318) took reliably fewer trials to reach criterion
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than those in the categorize task (M = 699, SD = 317; by Tukey’s HSD, p < .05). Partici-

pants given the who’s winning task took fewer trials to reach criterion as those given

who’s daxier (by Tukey’s HSD, p < .05). There was also a reliable main effect of role

assignment—F(1, 99) = 4.701, MSE = 479,678, p < .05. As expected, participants in the

consistent conditions (M = 381, SD = 360) reached criterion faster than those in the mixed

conditions (M = 521, SD = 341). This difference between consistent (M = 206, SD = 279)

and mixed (M = 468, SD = 359) was reliable only in the who’s winning condition—
t(36) = �2.534, p < .05.

3.2.2. Response times
As in Experiment 1, we analyzed response times on individual trials (Fig. 7). There

was a reliable effect of task—F(2, 99) = 9.296, MSE = 13.588, p < .001, such that

RTs in who’s winning (M = 2.96, SD = 1.48) were reliably longer than in categorize
(M = 1.66, SD = 0.75; by Tukey’s HSD, p < .001) and RTs in who’s daxier
(M = 2.55, SD = 1.18) were reliably longer than in categorize (by Tukey’s HSD,

p < .05). The main effect of consistent (M = 2.56, SD = 1.45) versus mixed (M = 2.36,
SD = 1.14) role assignment was not reliable—F(1, 99) = 0.402, MSE = 0.588,

p = .527. Experiment 2 thus showed a speed-accuracy trade-off similar to that observed

in Experiment 1.

3.3. Discussion

The results of Experiment 2 are consistent with both our hypothesized explanations of

the effect of “who’s winning” in Experiment 1. The fact that who’s daxier resulted in fas-

ter learning than categorize in both the consistent and mixed conditions is consistent with
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the hypothesis that who’s winning (like who’s daxier) encourages participants to compare

the circle and square in a way that categorization does not. This hypothesis is further sup-

ported by the fact that participants in the mixed winning condition performed similarly to

those in the daxier condition and better than those in the categorize condition. At the

same time, the fact that participants in the consistent winning condition learned faster

than those in either the mixed winning or daxier conditions is consistent with a winning-

schema-specific effect. Together, the results of Experiments 1 and 2 suggest that an effec-

tive way to help people learn relational categories with a probabilistic structure is to

recast the learning task in a form that encourages them to discover a higher order relation

that remains invariant over members of a category.

4. Experiment 3

The results of Experiments 1 and 2 suggest that finding an invariant higher order rela-

tion is extremely helpful to learning relational categories with a probabilistic structure

and that the who’s winning task facilitates finding such an invariant with our stimuli.

Experiment 2 also demonstrated that simply having a task that encourages participants to

think of the circle and square as separate objects (the who’s daxier task) is not, by itself,

sufficient to achieve the same facilitation enjoyed by participants given the who’s winning
task. By itself, however, the difference between who’s winning and who’s daxier is not

sufficient to conclude that something like a “winning schema” is responsible for partici-

pants’ superior performance in the who’s winning condition.

There are at least two additional differences between who’s winning and who’s daxier
that could account for the superior performance in the former condition: First, the ques-

tion “who’s winning?” is simply more meaningful than the question “who’s daxier?”, so

it is at least logically possible that this difference in meaningfulness somehow led to

better performance in the who’s winning condition. Second, asking “who’s winning?”

implies that whoever is not winning is losing. That is, the two roles of the winning/los-

ing relation have opposite valence. Perhaps it is something about relational roles with

opposite valence, rather than winning per se, that encourages participants to invoke a

schema that facilitates the discovery of an invariant higher order relation with our stim-

uli.

Experiment 3 was designed to tease apart these possibilities. Participants performed

one of five different tasks: The categorize, who’s winning, and who’s daxier tasks were

the same as in Experiment 2. In addition, one group of participants was asked to learn

“which one would Britney Spears like?”. We chose this task because, like who’s winning
and who’s daxier, it encourages participants to discover a higher order relation between

the circle and the square. And like who’s winning, but unlike who’s daxier, the roles of

this relation have opposite valence (presumably it is “good” to be liked by Britney) and

it has meaning. A fifth group of participants were asked to learn “which one comes from

Nebraska.” This task shares the comparative property of winning, daxier, and Britney and

it has semantic content, like winning and Britney, but presumably lacks strong differences
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in valence across its roles (i.e., it is presumably neither good nor bad to be from

Nebraska). These properties of our tasks are summarized in Table 1.

To the extent that simply having semantic content is sufficient to account for the dif-

ference between who’s winning and who’s daxier, performance in the Britney and

Nebraska conditions should resemble performance in who’s winning and be better than

performance in who’s daxier. To the extent that having asymmetrical valence across rela-

tional roles is sufficient, performance in Britney should resemble that in who’s winning
but performance in Nebraska should resemble performance in who’s daxier.

In addition, as in Experiment 2, we crossed the five learning conditions orthogonally

with consistent versus mixed role assignment as an additional check on their similarity to

who’s winning or who’s daxier. To the extent that Britney versus Nebraska are like who’s
winning versus who’s daxier, respectively, they should show the same patterns of sensi-

tivity versus insensitivity to role assignment.

4.1. Method

4.1.1. Participants
One hundred and ninety-one undergraduates participated in the experiment to fulfill a

course requirement. Each participant was randomly assigned to one of the 10 conditions.

4.1.2. Materials
The same stimuli used in Experiments 1 and 2 were in Experiment 3. The prototypes

and category structures were identical to those of Experiment 2.

4.1.3. Design
The experiment used a 5 (categorize vs. who’s daxier vs. which one comes from

Nebraska vs. which one would Britney Spears like vs. who’s winning) 9 2 (consistent vs.
mixed role assignment) between-subjects design.

4.1.4. Procedure
Aside from the instructions in the Britney and Nebraska conditions, the procedure was

identical to that of Experiment 2.

Table 1

Comparison of three main factors of all conditions in Experiment 3

Categorize

Who’s

daxier?

Which one comes

from Nebraska?

Which one would

Britney Spears like?

Who’s

winning?

Treats circle and square

as separate objects

No Yes Yes Yes Yes

Unequal valence across

two relational roles

No No No Yes Yes

Has semantic content No No Yes Yes Yes
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4.2 Results

4.2.1. Trials to criterion
We conducted a 5 tasks (categorize vs. daxier vs. Nebraska vs. Britney vs. win-

ning) 9 2 assignments (consistent vs. mixed) ANOVA, but Levene’s test (Levene, 1960) for

equality of variance revealed a significant difference in variance across five groups in tri-

als to criterion (p < .001). The trials to criterion across groups were positively skewed.

Thus, the data were log transformed to normalize the skewed distributions. After this

transformation, a 5 tasks (categorize vs. daxier vs. Nebraska vs. Britney vs. winning) 9 2

assignments (consistent vs. mixed) between-subjects design ANOVA revealed that Levene’s

test was not significant (p = .588). As shown in Fig. 8, there was a main effect of the

task—F(4, 181) = 9.811, MSE = 7.108, p < .001. Since our main interest is in how the

task itself affects the learning of probabilistic relational categories, we first report the data

from the consistent role assignment condition. A 5 tasks (categorize vs. daxier vs.

Nebraska vs. Britney vs. winning) between-subjects ANOVA revealed a reliable effect of

the task—F(4, 106) = 11.150, MSE = 7.525, p < .001. As in the previous experiments,

participants in who’s winning (M = 127, SD = 127) reached criterion faster than those in

who’s daxier (M = 276, SD = 241; p < .01) as well as those in categorize (M = 523,

SD = 341; p < .001; by Tukey’s HSD). Participants in daxier took reliably fewer trials to

reach criterion than those in categorize (by Tukey’s HSD, p < .05). Performance in Brit-
ney (M = 186, SD = 155) was not reliably different than in winning (by Tukey’s HSD,

p = .381). Participants in Britney reached criterion reliably faster than those in categorize
(by Tukey’s HSD, p < .001). The number of trials to reach criterion in Nebraska
(M = 250, SD = 218) was reliably less than in categorize (by Tukey’s HSD, p < .05).

There was also a main effect of role assignment—F(1, 181) = 26.769, MSE = 19.394,

p < .001. The winning task—t(38) = 3.717, p < .01, the Britney task—t(33) = 3.036,

p < .01, and the Nebraska task—t(35) = 3.006, p < .01, all of which have semantic con-

tent, showed reliable differences between the consistent and mixed conditions. There was
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no such effect in categorize—t(37) = 1.308, p = .199, or daxier—t(38) = 0.388, p = .7,

which lacks semantic content. The interaction between task and role assignment did not

reach statistical reliability—F(4, 181) = 2.208, MSE = 1.6, p = .07.

4.2.2. Response times
Levene’s test revealed a significant difference in variance across five groups in

response times (p < .05). The data were log transformed to normalize the skewed distri-

bution. After the transformation, a 5 tasks (categorize vs. daxier vs. Nebraska vs. Britney
vs. winning) 9 2 role assignments (consistent vs. mixed) between-subjects design ANOVA

revealed that Levene’s test was not reliable (p = .178). We report response times in the

consistent role assignment condition since we were mainly interested in how the different

tasks affect category learning in that condition. A 5 tasks (categorize vs. daxier vs.

Nebraska vs. Britney vs. winning) between-subjects design ANOVA revealed a reliable

effect of task—F(4, 106) = 6.177, MSE = 0.940, p < .001, (Fig. 9). Participants in win-
ning (M = 3.43, SD = 1.73; by Tukey’s HSD, p < .001) and daxier (M = 2.89,

SD = 1.29; by Tukey’s HSD, p < .05) took reliably longer to respond than those in cate-
gorize (M = 1.88, SD = 0.66). RTs in Britney (M = 2.58, SD = 0.79) were marginally

longer than RTs in categorize (p = .06) and RTs in Nebraska (M = 2.69, SD = 1.34)

were also marginally longer than RTs in categorize (p = .06; by Tukey’s HSD). As in

Experiments 1 and 2, Experiment 3 revealed a speed-accuracy tradeoff.

4.3. Discussion

Experiment 3 explored why who’s winning promotes faster learning of probabilistic

relational categories than who’s daxier. The who’s winning task is semantically rich, has

roles of opposite valence, and encourages participants to consider the circle and square as

separate objects. To examine how each of these factors contributes to the acquisition of
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an invariant higher order relation, we added two new tasks, which one would Britney
Spears like, which was assumed to have all three of these elements and thus to be equiva-

lent to who’s winning, and which one comes from Nebraska, which was assumed to have

the first and third, but without opposite valence. In contrast to the Nebraska task, the dax-
ier task has no semantic content. Consistent with our assumptions, learning in the result-

ing conditions fell roughly into three groups: Learning was fastest in winning and

Britney, followed by daxy and Nebraska, and finally by categorize. Within these group-

ings, differences in rate of learning were not statistically reliable. Between them, differ-

ences in learning rate were all reliable, with the exception of the difference between

Britney and Nebraska. This pattern of results suggests that tasks that treat the circle and

square as separate objects, have roles with opposite valence, and have semantic content

(like winning and Britney) may provide optimal conditions for discovering a higher order

invariant and thus facilitate learning. Missing of any of these elements, however, seems

to make category learning reliably worse.

5. Experiment 4

The purpose of Experiment 4 was to examine whether the who’s winning effect would

generalize to stimuli that map more naturally to a real-world task—specifically, a fictional

experiment in a biology laboratory. Each stimulus consisted of two “petri dishes” side by

side, each containing a number of “cells” (see Fig. 10). The cells in the dishes differed in

their number, size, darkness, and elongation. In the prototype of category T (denoted

[1,1,1,1]), the cells in the left dish were more numerous, larger, darker, and more elon-
gated than those in the right dish (the absolute number, size, darkness, and elongation of

the cells in both dishes was free to vary). In the prototype of category V (denoted

[0,0,0,0]), the cells in the left dish were less numerous, smaller, lighter, and rounder than
those in the right dish. As in the previous experiments, each exemplar was constructed by

adopting three relations of the corresponding prototype and one of the opposite prototype.

For example, in exemplar [0,1,1,1] (category T), the cells in the left dish were less
numerous, larger, darker, and more elongated than those in the right dish.

Fig. 10. Exemplar of the cell stimuli used in Experiment 4.
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The tasks were constructed to correspond to the critical tasks in Experiments 1–3. In
the categorize condition of Experiment 4, the participant was asked to categorize the pair

of petri dishes as belonging to category T or category V. (The labels T and V, which are

on the upper and lower portions of the center of the keyboard, were chosen to avoid stim-

ulus-response compatibility effects with the petri dishes, which were displayed on the left

and right sides of the screen.) Participants were informed of the relevant relations

between the cells, and they were informed that no single relation would determine cate-

gory membership by itself. In the which cells will live longer? condition, participants

were instructed to press the T key if the cells in the left dish would live longer than those

in the right, or to press the V key if those in the right dish would live longer. This task

was chosen to mimic the who’s winning task of Experiments 1–3. As in Experiments

1–3, the categorize and live longer tasks were isomorphic in the sense that any stimulus

that would be correctly categorized as a member of T also had the property that the cells

on the left would live longer, and any that would be correctly categorized as a member

of V had the property that those on the right would live longer (i.e., the stimulus-response

mappings were identical across the tasks). We also included a third condition, which
chemical was applied to the cells?, in which the participants were instructed that either

chemical T or chemical V had been applied to the cells in both dishes, and their task was

to decide which chemical had been applied. Like the live longer task, the stimulus-

response mapping in this task was identical to that in the categorize task. We included

the which chemical condition as a more natural (i.e., semantically meaningful) isomorph

of the categorize condition. Like participants in the categorize condition, participants in

the live longer and which chemical conditions were told what the relevant relations were

and were informed that no single relation would be perfectly predictive of the correct

response.

5.1. Method

5.1.1. Participants
Forty-five undergraduates participated in the experiment for course credit

Each participant was randomly assigned to one of three conditions and none had par-

ticipated in any of the previous experiments.

5.1.2. Materials
The current experiment used fictional “cells” as stimuli. We designed the cell stimuli

to be isomorphic to the circle and square stimuli used in the previous experiments. Each

stimulus depicted two “petri dishes” (large circles), each containing between three and

eight “cells.” The cells in the petri dishes differed in their number (one dish contained

more cells than the other), their size (those in one dish were larger in area than those in

the other), their darkness (those in one dish were darker than those in the other), and

elongation (those in one dish were more elongated than those in the other). In the proto-

type of category T, the cells in the left petri dish were more numerous, larger, darker,
and more elongated than those in the right petri dish. The prototype of category V
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depicted the opposite relations: The cells in the left petri dish were less numerous, smal-
ler, lighter, and rounder than those in right dish. As in the previous experiments, exemp-

lars of each category were made by switching the value of one relation in the prototype

and also two variants of each logical structure were constructed by varying the metric

properties size and darkness, providing eight exemplars per category (e.g., category T

exemplar [1,0,1,1] would have cells in the left petri dish more numerous, smaller, darker,
and more elongated than in the right petri dish).

5.1.3. Procedure
Participants were randomly assigned to one of three conditions: Categorize, in which

their task was exactly identical to the categorize condition in the previous experiment.

Participants were asked to categorize whether a pair of petri dishes belong to category T

or V. Which chemical was applied, in which their task was to decide which chemical T

or V was applied to the petri dishes; or Which cells will live longer, in which their task

was to decide cells in which petri dish will live longer. All participants in all conditions

were informed of the relevant relations and informed that no single relation was perfectly

predictive of the correct response.

5.2. Results

5.2.1. Trials to criterion
A 3 (categorize vs. which chemical was applied vs. which cells will live longer) between-

subjects design ANOVA revealed a main effect of task—F(2, 42) = 21.707,

MSE = 1,520,230.4, p < .001, (Fig. 11). We performed planned comparisons between all

three conditions. Participants in live longer (M = 82, SD = 53) reached criterion in fewer

trials than those in which chemical (M = 453, SD = 341)—t(42) = 3.841, p < .001), and

categorize (M = 716, SD = 302)—t(42) = 6.557, p < .001). Planned comparison between

which chemical and categorize also showed a reliable difference—t(42) = 2.715, p < .05).
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Fig. 11. Mean trials to criterion by condition in Experiment 4. Error bars represent standard errors.
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5.2.2. Response times
We analyzed response times on individual trials (Fig. 12). There was a reliable effect

of task—F(2, 42) = 7.191, MSE = 3.682, p < .01, such that RTs in live longer
(M = 1.96, SD = 0.89) were reliably longer than in categorize (M = 1.04, SD = 0.42; by

Tukey’s HSD, p < .01) and RTs in which chemical (M = 1.81, SD = 0.76) were reliably

longer than in categorize (by Tukey’s HSD, p < .05). There was no significant difference

between live longer and which chemical (by Tukey’s HSD, p = .845). Experiment 4 thus

showed a speed-accuracy trade-off similar to that observed in the previous experiments.

5.3. Discussion

Experiment 4 replicated and extended the critical findings of Experiments 1–3. Participants
given the live longer task learned substantially faster than those given either categorize or

which chemical. If anything the effect of live longer was numerically greater (82 trials to cri-

terion) than the effect of who’s winning (160 trials to criterion in the corresponding condition
of Experiment 1) as compared to categorize (716 and 623, respectively). The reason for the

facilitatory effect ofwhich chemical relative to categorize is less clear, but it is consistent with
the general idea that simply making the task meaningful facilitates participants’ learning. In

contrast to, say, the daxy condition (Experiment 2), which encourages comparison but pro-

vides no semantic link between the materials and the task, the which chemical task has intui-
tive semantic relations to differences in cell growth.

6. General discussion

Kittur et al. (2004) showed that learning relational categories with a probabilistic (fam-

ily resemblance) structure is extremely difficult. They interpreted this result as indicating

that relational category structures invoke the machinery of schema induction by intersec-
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Fig. 12. Mean response times by condition in Experiment 4. Error bars represent standard errors.
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tion discovery (Gick & Holyoak, 1983; Hummel & Holyoak, 2003), a learning algorithm

that works well for deterministic structures but fails catastrophically with probabilistic

category structures, in which no single feature or relation remains invariant across all ex-

emplars of a category. The current study further tested this intersection discovery hypoth-

esis by exploring conditions that render probabilistic relational category structures

learnable. Specifically, the intersection discovery hypothesis predicts that any task that

leads the learner to discover a (e.g., higher order) property or relation that remains invari-

ant over exemplars of an otherwise probabilistic relational category structure ought to

render that structure learnable.

Experiment 1 showed that replacing the category-learning task with the completely iso-

morphic task of learning which of two parts of an exemplar is “winning” renders the

probabilistic relational category structures easily learnable: Although people had great dif-

ficulty learning whether a given circle–square pair belonged to category A or category B,

they had no difficulty learning whether the circle or the square was “winning,” even

though the stimulus-response mappings were identical across the two tasks. And although

naming the relevant relations and providing the clue (that no single relation would be a

reliable indicator of the correct response every time) both facilitated learning in the who’s
winning condition, and they individually facilitated learning in the categorize condition,

together, they interfered with learning in the categorize condition. Indeed, learning was

numerically (although not reliably) slowest in the relations named, clue, and categorize
condition: It would appear that the worst thing one can do to a person who is trying to

learn probabilistic relational categories is inform the person that he or she is trying to

learn probabilistic relational categories.

Experiment 1 also demonstrated that the difficulty of learning probabilistic relational

categories reported here and by Kittur and colleagues does not simply reflect the “unnatu-

ralness” of the stimulus materials used in our and Kittur et al.’s experiments. Although it

is arguably unnatural to categorize circle–square pairs based on the relations between

them, and this unnaturalness may make the categories difficult to learn, it is at least as

unnatural to declare a circle or a square a “winner” based on those same relations, and

yet this task is easy to learn.

Experiment 2 demonstrated that this effect is not simply due to participants being

encouraged to compare the circle and square as separate objects in the “winning”

task: Asking participants “which is daxier” improved learning relative to the category-

learning task but did not bring it up to the level of performance in the “winning”

task.

Experiment 3 systematically explored the properties of the “winning” task by compar-

ing it to a variety of related learning tasks. The results suggest that what is crucial about

the “winning” task is that it encourages learners to compare the circle and square with

the goal of assigning each to one the role of a relation whose roles have unequal valence.

Finally, Experiment 4 demonstrated that an isomorphic task, which cells will live
longer?, using stimuli and responses that map more naturally onto a task the learner may

encounter in “real life” (or at least in a biology laboratory), replicates the basic “winning”

effect and, if anything, has an even stronger facilitatory effect on learning.
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These results replicate and extend those of Kittur et al. (2004, 2006), providing further

evidence that the task of learning a category defined by the relations between things,

rather than just the features of those things, invokes a process of schema induction by

intersection discovery in the mind of the learner. Although this process works well with

categories whose members all share one or more invariant relations, it fails catastrophi-

cally with categories that lack such an invariant.

6.1. Relational concepts

Numerous researchers have emphasized the central role of relational structures such as

schemas and theories in human cognition (e.g., Barsalou, 1983; Gentner, 1983; Gick &

Holyoak, 1983; Murphy, 2002; Murphy & Medin, 1985; Rehder & Ross, 2001). A gen-

eral consensus that emerges from this literature is that relational concepts behave in a

qualitatively different manner than feature-based concepts (e.g., Barsalou, 1983; Doumas

et al., 2008; Gentner, 1983; Gick & Holyoak, 1983; Holyoak & Thagard, 1989, 1995;

Goldwater & Markman, 2011; Goldwater et al., 2011; Hummel & Holyoak, 1997, 2003;

Kittur et al., 2004, 2006; Murphy, 2002; Murphy & Medin, 1985; Rehder & Ross, 2001;

Tomlinson & Love, 2010; for a review, see Holyoak, 2005). For example, Goldwater and

Markman (2011) showed that analogical comparison increased people’s sensitivity to

role-governed categories—categories such as friend or guest that are defined by the rela-

tional role in which an object is engaged. Goldwater et al. (2011) showed that, when

asked to choose words to describe feature-based categories, people tend to choose words

describing typical category characteristics; but when asked to choose words describing

role-governed categories, people tend to choose words describing ideal characteristics

(see also Kittur et al., 2006; Rein, Goldwater, & Markman, 2010). Similarly, Ross and

Murphy (1999) observed that people tend to make taxonomic inferences about category

membership in response to category members’ features, but they are more likely to make

script-based inferences about category membership in response to situational (i.e., rela-

tional) information. For example, people are more likely to choose a taxonomically

related alternative (e.g., another fruit) in response to the question “What food is more

likely to contain metacascal?” than to choose a script-based alternative (e.g., another

breakfast food). By contrast, when asked to choose which other food is more likely to be

used in an initiation ceremony, they are more likely to choose a script-based alternative

than a taxonomically related alternative.

The findings reported here suggest that, not only do relational categories behave in a

qualitatively different manner than featural categories, they are also learned in a qualita-

tively different manner. In particular, these findings suggest that, as hypothesized here

and by Kittur and colleagues, relational categories are learned by a kind of structured

intersection discovery, and that this process fails catastrophically with probabilistic cate-

gory structures. As a result, one of the most robust phenomena observed in the literature

on cognitive psychology—prototype effects (see Murphy, 2002; for a review)—do not

obtain with relational categories (Kittur et al., 2004).
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Our findings also replicate and extend those of Rehder and Ross (2001) with abstract
coherent categories. Rehder and Ross showed that, when members of a category are uni-

ted by sharing an unstated higher order relation (specifically, whether the properties of a

category member work together in a coherent manner to achieve a goal, such as cleaning

spilled oil from water), the categories are easier to learn than when their members do not

share this higher order relation. These researchers interpreted their findings in terms of

their coherent categories making contact with participants’ preexisting schemas in a way

that incoherent categories do not. Our results (especially those of Experiments 3 and 4)

reinforce the role of preexisting schemas in learners’ ability to make sense of and acquire

new categories, and extend Rehder and Ross’s original findings by highlighting the role

of those schemas in the learners’ discovery of an invariant that is shared by all members

of the relational category.

6.2. The frailty of probabilistic relational concepts

Feature-based category structures are easy to learn by simple association: It is only

necessary to tabulate, explicitly or implicitly, the co-occurrence statistics of features and

category labels. As long as the majority of features in exemplar favor one category label

over another, it is possible to assign the correct category label to the stimulus. Determin-

istic featural categories might be easier to learn than probabilistic ones, but only because

a larger majority of the features “point in the direction” of one category label or another,

or because one feature “points” more strongly (see also Newell, Dunn, & Kalish, 2010).

Deterministic category structures are thus not qualitatively different than probabilistic

ones; they are simply different points on the same associative learning continuum.

Although associative learning is adequate for acquiring feature-based concepts, it is

inadequate for acquiring relational concepts (see Chomsky, 1959; Deacon, 1997; Doumas

et al., 2008; Hummel & Holyoak, 2003) because the meaning of a relational concept like

larger-than is simply nowhere to be found in the co-occurrence statistics of the objects or

features engaged in that relation (see, e.g., Doumas et al., 2008; Gentner, 1983): Almost

any given object is both larger-than and smaller-than an infinity of other objects. This

observation has led some researchers to hypothesize that relational structures such as

schemas (Gick & Holyoak, 1983; Hummel & Holyoak, 2003) and even individual rela-

tions (such as larger-than; Doumas et al., 2008) are learned, at least in part, by a pro-

cesses of structured intersection discovery. Hummel and Holyoak (2003) showed that

intersection discovery provides a good account of schema induction, and Doumas et al.

(2008) demonstrated that it provides an excellent account of the acquisition of relational

concepts (in both development and adulthood). But it fails catastrophically with concepts

that do not have a deterministic structure.

One potential explanation of the data presented here, and by Kittur et al. (2004, 2006),

is that both (feature-based) associative learning and (relational) schema induction are

engaged during all cases of concept acquisition (see Kittur et al., 2006; Ashby, Paul, &

Maddox, 2011, for similar proposals and supporting evidence). Associative learning suc-

ceeds in acquiring feature-based categories, perhaps rendering the results of schema
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induction irrelevant or at least redundant. In response to deterministic relational catego-

ries, associative learning fails, but schema induction succeeds, resulting in relational con-

cepts (schemas and/or relational predicates). But faced with probabilistic relational

categories, both associative learning and schema induction fail, leaving the learner with

little or no basis for categorizing new exemplars.

7. Conclusion

Four experiments showed that recasting category learning as a “who’s winning” task

considerably improved participants’ ability to learn relational categories with a family

resemblance structure. Our findings also suggest that the traditional categorize-with-feed-

back laboratory category-learning task may somehow inhibit, or at least fail to promote,

the discovery of the higher order invariants necessary for intersection discovery to suc-

ceed with exemplars defined in terms of probabilistic first-order relations. As such, it

appears that probabilistic relational categories may be more learnable if one does not

realize one is engaged in category learning.

Our results, like those of Kittur et al. (2004, 2006), raise the question of whether natu-

ral relational concepts and categories tend to have deterministic or probabilistic structures.

Do schemas and theories tend to possess relational invariants? For example, is there a

relational core that all members of the category “mother” have in common? Although at

first it is tempting to say yes, the differences between birth mothers and adoptive moth-

ers, and between loving mothers and abusive mothers, suggest that the answer might be

no. If the answer is no, then we may have multiple “mother” schemas, as suggested by

Lakoff (1987). That is, although “mother” may appear at first blush to be a single (rela-

tional) concept without an invariant relational core, it is also possible that the word

“mother” refers to multiple concepts, each with its own relational invariants.

The literature on concepts and categories is characterized by a divide between studies

emphasizing the family resemblance nature of our concepts and those emphasizing their

theory-based, relational nature. One of the most important implications of the current

findings (like those of Kittur et al., 2004) is that schemas and theories must contain rela-

tional invariants (or else be extremely difficult to acquire). That is, like scientific theories,

theory-based concepts may be subject to falsification based on a single compelling coun-

terexample. But also like scientific theories, our theory-based concepts seek to unify

observable first-order observations under invariant higher order relations.
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Notes

1. Armed with these relational matches, structure mapping affords complex, relational

inferences by a kind of copy with substitution and generation (CWSG; see Holyoak &

Thagard, 1995), in which structures in one situation can be copied into the other situa-

tion, substituting the corresponding role bindings (e.g., just as the traveler may try to

find an alternate route from A to B around the concrete structure, the hopeful student

may try to find an alternate way to pay the university’s tuition). This same kind of

CWSG also provides a natural account of abstract, variablized rule following. For

example, if one knows the rule for all x, y, and z, and for all transitive relations, phi,
phi(x, y), and phi(y, z) implies phi(x, z), and one encounters the example wickier (dax,
blicket) and wickier (blicket, rokum), then one can infer wickier (dax, rokum) by

binding wickier to phi, dax to x, blicket to y, and rokum to z, and applying CWSG.

Formally, CWSG is a kind of union discovery, in the sense that it augments the spe-

cific example (here, wickier, etc.) to become the union of itself and the corresponding,

but heretofore missing, elements of the rule. The process of discovering the abstract

rule from examples in the first place has been characterized as the complementary

process of intersection discovery, in which concrete examples are structurally aligned

and their relational intersection is taken to be an abstract characterization of both

(Doumas et al., 2008; Gentner, 1983; Gick & Holyoak, 1980, 1983; Holyoak & Tha-

gard, 1995; Hummel & Holyoak, 2003). The virtues of this intersection discovery

process are that it is based on relational matches, and that it preserves only those

abstract structures—presumably, the underlying relational structures—that drive and

thus “survive” the alignment and intersection-taking process

2. Although relational concepts such as larger-than are formally too complex to learn

by association, novel ideas (such as “oranges are larger than grapes”) or categories

(such as “jumbo shrimp”) based on familiar relations with novel arguments are

learnable by association once the basic relational concepts (here, larger-than) are

in place (see Doumas et al., 2008; Hummel & Holyoak, 2003). That is, although

relations, per se, are not learnable by association, this is not to say that all rela-

tional concepts must necessarily defy associative learning. Nonetheless, if the pres-

ence of relational concepts invokes a non-associative learning bias on the part of

the cognitive architecture, then that bias might be expected to persist even in those

cases, such as learning new arguments of familiar relations, when associative learn-

ing would otherwise work.

3. Specifically, in this condition, the instructions contained the sentence, “Each object

consists of a circle and a square, one of which is larger than the other, one of

which is darker, one of which is above the other, and one of which is in front of

the other.”
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