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Abstract

Piaget’s classic experiments enabled, among many
other things, identification of the types of reason-
ing children use in different developmental stages.
His work identified both hypothetico-deductive
and analogical reasoning as strong indicators of
normal development. Although examples of each
can be seen early on, consistent application and
control of these types of reasoning emerges some-
where between Stages III and IV. Given their im-
portance in the developmental process, it can only
help the study of cognitive development to have
a deeper understanding of how these types of rea-
soning are carried out. We focus in this paper on
ways in which they interact (we call this ADR,
for analogico-deductive reasoning); specifically on
the interaction of generation, development, and
testing of hypotheses. We present a model and
show how it can explain the reasoning processes
of a Stage-III subject working on Inhelder and Pi-
aget’s (1958) seminal balance-beam task.

Analogy and Analogico-Deductive
Reasoning

Analogical reasoning (AR) has always played an im-
portant role in Piagetian theories. While Piaget sus-
pected that AR was a mark of formal reasoning (Pi-
aget, Montangero, and Billeter 2001), Goswami showed
that at least some analogical ability resides in younger
children (Goswami and Brown 1990). Of the Neo-
Piagetians, Halford was perhaps the most passionate
proponent of AR, citing it as a key feature of his re-
lational complexity theory (Halford and McCredden
1998; Halford et al. 2002). Some go as far as to sug-
gest that AR is the core of all cognition (Gentner 2003;
Hofstadter 2001).

However, relatively recently, some researchers have
started to take deeper, more detailed looks at how
AR interacts with the hypothetico-deductive process,
mostly through simulations using computational mod-
els. Christie and Gentner (2010) examined whether
analogical reasoning was involved in the generation
of new hypotheses, and their results suggested that
children tend to use relational hypotheses only when

the experiment design invites side-by-side comparison.
In (Bringsjord and Licato forthcoming), the present
authors applied analogical reasoning to the Piagetian
magnet test, proposing a model to simulate what we
called analogico-deductive reasoning.

Analogico-deductive reasoning (ADR) is the intersec-
tion of hypothetico-deduction and analogical reasoning.
In particular, we focus on a subset of ADR that involves
the formation of hypotheses hi and the generation of re-
sults ri which must be true if the hi are true. Analogical
reasoning can be responsible for either the formation of
the hypotheses, or the conditionals of the form hi → ri.
Through further reasoning and experimentation in or-
der to determine the validity of the ri, the hi can be ei-
ther supported or rejected, ultimately by inference rules
like modus tollens and reductio ad absurdum.

This type of ADR is frequently used by individu-
als trying to understand new or unfamiliar concepts.
Holyoak et al. (2001), for example, explain that as the
wave theory of sound became better understood, it be-
came used as a basis to describe a wave theory of light.
This was an analogical mapping which would have im-
plied the existence of a medium through which light
would travel (the luminiferous aether), just as sound
waves travel through air. Compare this with a particle
theory of light that sees photons as analogous to bil-
liard balls, which would not require a medium to travel
through, and would produce a different set of experi-
mentally verifiable predictions.

However, the nondeterministic nature of analogical
reasoning makes it difficult to use any model of ADR
as a way to predict behavior. AR is often used to map
knowledge from a domain with which a reasoner is fa-
miliar (the source analog) to a domain with which the
reasoner is not (the target analog). But since the source
analog can be almost any domain with which the rea-
soner is familiar, the analogical mappings drawn may
be based on something as arbitrary as what thoughts
happen to be active in the reasoner’s mind at the time.
Unless the source domain is provided, it is difficult if
not impossible to accurately predict beforehand which
analogs a reasoner will retrieve. What we do know,
however, is that analog retrieval and selection tends to
be related to surface similarity; for more information,



see Gentner et al. (1993), Holyoak (1987), Ross (1989),
and Gentner and Forbus (2011).

Perhaps because analogies are so hard to forecast,
most models of Piagetian tasks do not focus on the
analogies that subjects use to understand them. This
has certainly been the case throughout the history of
the Balance-beam task, the central task of this paper.
Yet while such a focus has limited use as a predictive
model, it deserves a closer look. Attempting to model
ADR by closely analyzing the analogies given by indi-
vidual subjects may shed some light on some processes
that other models tend to neglect, but which are of cen-
tral importance to human thought: insight, hypothesis
generation, experiment creation, and hypothesis test-
ing, to name a few. In this paper, we focus on the
ADR used by a subject described by Inhelder and Pi-
aget (1958); the subject used an analogically-inspired
insight to produce solutions to the balance-beam task
(BBT).

We begin by describing the BBT and its history, par-
ticularly the history of computational simulations of the
BBT. We then introduce the subject whose analogy we
will study, and describe our approach to modeling it. A
discussion of the model and lessons learned follows.

The Balance-Beam Task
The balance-beam task (BBT), first described by In-
helder and Piaget (1958), is one of the most well-known
and studied of the classical Piagetian tasks. In one vari-
ation, the subject is presented with a scale containing
a number of holes on each side (Figure 1). On these
holes the subject can hang a number of weights. In one
common variation of the BBT, the subject is shown a
configuration with weights already hung on each side,
and is asked to predict whether the scale will balance,
tip to the right, or tip to the left.

The torque produced on each side is equal to the sum
of each weight multiplied by that weight’s distance from
the fulcrum (the ‘torque rule’). Knowing this allows for
an easy way to make an accurate prediction. However,
the ways in which younger subjects attempt to muddle
through is very instructive, and a wealth of literature
has been produced from reflection on this seemingly
simple problem. In order to understand the current
state of computational modeling of the BBT, we will
briefly review some of the relevant literature here. For
more thorough summaries of the current state of re-
search on the BBT, please see van Rijn et al. (2003)
and van der Maas and Raijmakers (2009).

Models of the BBT
One of the earliest and perhaps most-cited post-
Piagetian analyses of the BBT comes from Siegler
(1976; 1981). Siegler introduces a decision-tree model
based on the idea that children will follow one of four
rules when attempting to solve the BBT. Each of these
rules could be represented by a single decision tree, and
each rule is more complex than the last. For example,

Rule I consisted of a single decision: Is the weight on
the two sides the same? If so, the subject predicts the
scale will balance; if not, the subject predicts the side
with the greater weight will go down. Rule IV, on the
other hand, has decisions contingent on more compli-
cated cases (e.g., Is the side with the greater weight the
same side as that with the greater distance? ). Subjects
were then classified based on which of these rules they
followed. It is worth noting that the increasing com-
plexity of the rules seems to fit nicely with the idea of
working memory as described by Halford (1998; 2002):
the older subjects get, the more variables they can si-
multaneously reason over (and the more complex the
rules they can follow).

Although Siegler found that many subjects could in-
deed be neatly classified as following one of these rules,
the amount of unclassified subjects was not insignif-
icant. This problem was addressed by another rule-
based model, that of Wilkening and Anderson (1982).
They determined that Siegler’s decision-tree methodol-
ogy lacked the ability to represent algebraic integration
rules. For example, the decisions of a subject using
an “adding-type rule" which would add the weights to
their distances from the fulcrum on each side, and then
determine which side was greater, would not be mod-
eled correctly using binary decision trees. Some of these
criticisms were supported by Normandeau et al. (1989),
who found that Siegler’s Rule III underestimated the
ability of many adolescents. Their behaviors were bet-
ter explained with a rule-based model that incorporated
both Wilkening and Anderson’s adding-type rule, and
a “QP" (qualitative proportionality) rule. Users of the
QP rule would predict that a heavy weight at a small
distance on one side balances with a light weight at a
great distance on the other, demonstrating just the type
of integrative reasoning (since rather than examining
weight or distance separately, it was done in parallel)
which was missing from Siegler’s original rules.

As much as these rule-based models allowed for some
explanation of the behaviors of subjects taking the
BBT, they did a poor job at explaining where the rules
came from. Furthermore, rule-based models seemed to
have trouble explaining the TD (torque-distance) effect
(Ferretti and Butterfield 1986), which seemed to indi-
cate an intuitive understanding of torque in subjects
who did not know the equations to properly describe
it. Subjects have an easier time predicting the outcome
of the scale when the torque difference is larger, even
if there are fewer weights on the side with the higher
torque. It is important to note that the torque differ-
ence must be relatively large, otherwise the TD effect
is not observed in empirical data (Jansen and van der
Maas 1997).

Connectionists use the inability of rule-based models
to explain the TD effect as one of the main arguments
for the superiority of their models, the most successful
of which were perhaps those of McClelland (McClelland
1989; McClelland 1995) and the cascade-correlation
models of Shultz (Shultz, Mareschal, and Schmidt 1994;



Figure 1: A Balance Scale Like That Used in Inhelder and Piaget (1958)

Shultz 2003). These models were able to duplicate
many of the behaviors described in the empirical data.
Furthermore, it seemed that these models provided a
lower-level explanation of where the rule-following be-
havior actually came from, something which was sorely
lacking in the rule-based models. There were of course
some limitations of the connectionist models; among
these is the fact that they are unable to satisfactorily
demonstrate the highest level of performance on the
BBT: the discovery and use of the torque law (van der
Maas and Raijmakers 2009). Furthermore, the connec-
tionist models perform poorly when subjected to latent
class analysis (LCA); for a technical discussion see van
der Maas and Raijmakers (2009), who discuss the lim-
itations of connectionist models and discuss their own
hybrid approach, which attempts to combine symbolic
and sub-symbolic representation.

To close out the discussion on connectionist models
we note that they suffer from another major weakness.
Consider that under classical reasoning, subjects can
give high-level explanations and arguments for how they
believe things work. In fact, making use of this sort of
justification is a major component of Piaget’s méthode
clinique. With the abstract distributed representation
employed by most purely connectionist models, it is not
clear how high-level reasoning, beliefs, and arguments
fit in.

Though it seems that much ground has already been
covered in the existing literature, at least one approach
to computational models of the BBT is conspicuously
absent—that of modeling the reasoning which leads to
discovery of the law. This is no doubt due to the scope
of the aforementioned computational models, which at-
tempt only to duplicate the behavior of subjects who
are limited to predicting the outcome of a fixed instance
of the BBT. However, in the more complex version of
the BBT, which allows subjects to freely place and re-
move weights (we will refer to this as the “non-predictive

BBT," or NBBT, as opposed to the restricted version
used by Siegler and others, which we will refer to as the
RBBT), the subjects quickly act in ways that go beyond
what can be described by simple behavioral computa-
tional models. For example, if a child following one of
Siegler’s rules observes that an instance of the NBBT
behaves in a way contrary to what he predicted, he
might then attempt to discover a new rule R to follow.
He could then design experiments that would test the
behavior of the scale, and either support or refute R.

But where does R come from? This is hardly an easy
question to answer from the the perspective of rule-
based models. The connectionist models at least seem
to offer a partial answer: most connectionist models
can be seen as systems which take in a certain set of
inputs, and produce outputs based on the current val-
ues of the system’s parameters (which are usually the
weights of the connections). The design of the system
thus defines a set (which may be infinite in size) of pos-
sible hypotheses the model will follow to determine the
output(s), which are adjusted over time as the system
learns and the parameters are adjusted.1 Still, how such
processes would produce the kinds of hypotheses that
require complex reasoning (such as the torque rule) is
yet to be seen.

Analogico-deductive reasoning may be able to ad-
dress this trade-off, by showing how new rules can be
generated from analogical inference, and supported or
refuted using a combination of analogical and deductive
reasoning. We demonstrate this by applying our model
to a case described in Inhelder and Piaget (1958).

1It is a bit more complicated with the cascade-correlation
models (Shultz, Mareschal, and Schmidt 1994; Shultz 2003),
since their learning process involves qualitative additions to
the neural network itself.



The Case of Rog

Given the vast collection of empirical data and models
to predict how a child is likely to reason through
the RBBT, it is interesting that there is one subject
described in the original text by Inhelder and Piaget
which does not fit into the predictions made by any
of the previously mentioned models. The subject, a
child in Piaget’s Stage-IIIA, and referred to as ‘Rog,’
provides an explanation for his reasoning that is clearly
analogical, although its modeling is not as simple as it
first seems. The entirety of the interaction as provided
by Inhelder and Piaget is as follows (E denotes the
experimenter, and text in italics is spoken by neither
the experimenter nor Rog):

For a weight [weighing 16-units] placed at the very tip
of one arm [28 holes], he puts [a 3-unit weight and a
5-unit weight] in the middle of the other arm, measures the
distances, and says:
Rog: “That makes 14 holes. It’s half the length. If the
weight [8-units] is halved, [the 16-unit weight] duplicates."
E: “How do you know that you have to bring the weight
toward the center?"
Rog: “The idea just came to me, I wanted to try. If I bring
it in half way, the value of the weight is cut in half. I know,
but I can’t explain it. I haven’t learned."
E: “Do you know other similar situations?"
Rog: “In the game of marbles, if five play against four, the
last one of the four has the right to an extra marble."
He also discovers that for two distances of 1 and 1/4 you
have to use weights 1 and 4; that for two distances of 1 and
1/3 you need weights 1 and 3, etc.
Rog: (later) “You put the heaviest weight on the portion
that stands for the lightest weight [which corresponds to
the lightest weight ], going from the center." (Inhelder and
Piaget 1958, p.173-174)

Inhelder and Piaget took this to be a clear indicator of
the presence of proportional reasoning, and they were
likely correct. They suggest the existence of an “an-
ticipatory schema" that is “taken from notions of reci-
procity or of compensation" (Inhelder and Piaget 1958),
where those notions were themselves taken from Rog’s
experiences with the game of marbles. Rog is, in effect,
using analogical inference to generate a theory about
how the balance beam works: It is as if each side of the
scale corresponds to a team of marble-players. Like the
previously mentioned analogies regarding the nature of
light, Rog’s theory comes with hypotheses that could
then be tested, as he does when he places eight units of
weight on the scale.

The exact procedure used with Rog is not clear from
the text; for example, we do not know how much ex-
perimentation Rog was allowed to do before the above
transcription begins, nor do we know if Rog was told
that he was not allowed to move the 16-unit weight (or
if he decided to place that first weight on his own). We
do know that Inhelder and Piaget allowed some sub-

jects “to hang the weights simultaneously on both sides
of the balance," or to allow “successive and alternate
suspensions of the weights" (Inhelder and Piaget 1958,
p.173). We will assume here that Rog was presented
with the subproblem defined as follows: Given a set
W of weights, and a scale set up so that one 16-unit
weight (which cannot be moved) is placed on the 28th
hole of one arm, what weights must be placed at which
distance on the other arm in order to balance the scale?

Some of the obvious answers must be ruled out. We
assume that there are no weights greater than or equal
to 16-units inW, and no weights inW can be combined
to be equal to or greater than 16-units. Otherwise, Rog
might have easily just placed the proper combination of
weights on the 28th hole, balancing the scale. Again,
it is not clear that these were the conditions in Rog’s
case, but since our purposes here are to use modeling in
an exploratory manner, we clarify them in the interest
of simplicity.

Modeling the Analogy
We can now turn to our approach to modeling the type
of reasoning that allowed Rog to reach his conclusion.
We start by noting that even if Rog’s reasoning process
was at least in part analogical, it is worthwhile to briefly
consider that it may not have been done in the way we
suppose. Rog’s knowledge of the game of marbles may
not have been the source in the analogical mapping, but
rather a target analog that was generated just to pro-
vide an after-the-fact justification of his actions to the
experimenter. There are at least two other possibilities
which seem plausible:

• P1 The analogical mapping was made in the other
direction: The game of marbles was the target, and
the BBT was the source. Rog’s understanding of
how to balance the BBT came from some other pro-
cess (which may or may not have been analogico-
deductive).

• P2 There are separate, but similar, analogical map-
pings from a more general “reciprocity or compensa-
tion" schema to both the game of marbles and the
BBT.

It is entirely plausible that either of these possibilities
were actualized in Rog’s case. However, they do not
provide any answers to the question of the origin of the
source schema, and are therefore not discussed in this
paper. They are only mentioned here in order to clarify
the direction in which we are exploring, and may be
useful topics for future work. We will therefore assume
for now that the process which leads to Rog’s theory is
something like an analogical mapping drawn from his
knowledge of the game of marbles.

The LISA System
The system we use for analogical reasoning is LISA
(Learning and Inference with Schemas and Analo-
gies), a neurally-plausible model of analogical reason-



ing which uses a hybrid connectionist and symbolic ar-
chitecture (Hummel and Holyoak 2003a; Hummel and
Holyoak 2003b). We here provide only a very brief sum-
mary of some relevant features of LISA; for a more de-
tailed description the reader is directed to (Hummel &
Holyoak 2003a;2003b) and (Hummel & Landy 2009).

LISA is a “structured connectionist" architecture,
which allows for both explicit, localist representation
of propositional knowledge, and distributed semantic
knowledge. Propositional knowledge, the arguments
of which can be either token objects or other propo-
sitions,2 is localist (meaning a single node is created
for each instance of a proposition). All propositional
knowledge is organized into analogs, which contain the
proposition nodes, along with other related units: the
sub-propositional units which help to bind relational
roles within propositions to their arguments, nodes rep-
resenting the objects (one object unit corresponds to
a token object across all propositions within an ana-
log), predicate units which represent the individual
roles within a proposition, and higher-level groupings
of propositions (Hummel and Landy 2009). Seman-
tic units, which are outside of and shared by all of
the analogs, connect to the object and predicate units.
Higher-order groupings of propositions are also allowed,
such as cause-effect groups.

When visually presenting data in LISA, we main-
tain consistency with (Hummel and Holyoak 2003a),
as in figure 2. We divide the image up into three sec-
tions: the schemas of analog 1 and analog 2, and the
semantic units shared by both analogs. Semantic units
are pictured as circles at the bottom (although note
that in Figure 2 the individual semantic units are not
shown); object units are also in circles but are parts
of the analogs. The sub-propositional units are rectan-
gles, and the predicate units which connect those sub-
propositional units to semantic units are shown as tri-
angles. Propositional units are shown as large ovals,
and the group nodes organizing those propositions are
shown as diamonds on the top of the screen. Addition-
ally, when necessary, we draw units using dotted lines
if they were created as a result of analogical inference.

LISA makes the theoretical assumption that the same
underlying processes are responsible for two necessary
functions of analogical ability: analog retrieval, which
retrieves relevant source analogs from long-term mem-
ory; and analogical mapping, which aligns knowledge
units in the source analog to units in the target. This
is a key difference from models such as the Compan-
ions cognitive architecture (Forbus, Klenk, and Hinrichs
2009; Gentner and Forbus 2011), which uses SME (Gen-
tner 1983) for analogical mapping and MAC/FAC (For-
bus, Gentner, and Law 1995) for analogical retrieval.
LISA uses its detailed semantic representations to bring
relevant analogs into working memory (Hummel and
Holyoak 1997).

In self-supervised learning, LISA performs analogical

2E.g., Knows(tom, Loves(sally, jim)).

inference by firing the propositional units in a preset or-
der, which propagates down to the semantic units. This
allows for units in different analogs to be temporarily
mapped to each other if they fire in synchrony, and for
new units to be recruited (alternately: inferred) if nec-
essary. The recruiting of new propositional units in the
source analog is the ideal result of analogical inference,
and will be the primary functionality of LISA used in
the present paper.

Because the mapping process is initiated by the firing
of propositional units, the way they fire has an effect on
what mappings are formed in two ways. First, the or-
der can sometimes cause erroneous mappings to occur,
and when they occur early enough in the mapping pro-
cess they can heavily influence the final results (Hum-
mel and Holyoak 2003a; Hummel and Holyoak 2003b).
Secondly, the number of propositional units fired simul-
taneously (which is called the phase set3) is limited by
a number of factors; one of the most important of these
is driver inhibition, or the ability of sub-propositional
units to inhibit each other when firing simultaneously.

This enables LISA to simulate some normal effects
of cognitive development and working memory. LISA
also contains an option for unlimited working memory,
which enables a phase set of virtually unlimited size.
These parameters are useful when examining robust-
ness, but we will be using the default values unless oth-
erwise noted.

Simulating Rog’s Analogico-Deductive
Reasoning
Inspired by the description of Rog’s analogy, we at-
tempt to create a simple model that can carry out the
ADR required to reach the same or similar conclusions.
We are not here particularly interested in how a source
analog is chosen; rather, we focus on the ADR which fol-
lows the selection of a suitable analog. The goal of such
research is to extract lessons from that attempt, and
apply them toward a more general model of analogico-
deductive reasoning.

As mentioned earlier, we will assume that the process
that leads to Rog’s theory is something like an analog-
ical mapping drawn from his knowledge of the game of
marbles. What might such a mapping look like, using
the data structures available in LISA? It seems safe to
start with the objects that Rog directly mentions: the
number of players on each team, the last player on the
team of less players, and the extra marble given to this
player.

Listing the predicates that Rog seems to use is
slightly more complicated. Clearly, he has some con-
ception of balance, in the abstract sense that can de-
scribe both a state of equilibrium on the scale and a sort
of fairness that occurs when both teams in the game of

3The phase set can also be defined, as in Hummel and
Holyoak (1997), as the “number of distinct role bindings
(SPs) that can be considered together prior to updating the
mapping connections.”



Analog	  1	   Analog	  2	  

Seman-c	  Units	  

Contributes	  
(marble)	  

Contributes	  
(player)	  

Remove_One	  
(player,	  team_a)	  

Add_One(marble,	  	  
team_a)	  

Balanced(team_a,	  	  
team_b)	  

Balanced(team_b,	  	  
team_a)	  

Adversaries(	  
team_a,	  team_b)	  

Adversaries(	  
team_b,	  team_a)	  

marble	   player	   team_a	   team_b	  

C1	   C1	   R1	   R2	   Ao1	   Ao2	   B.11	   B.12	   B.21	   B.22	   A.11	   A.12	   A.21	   A.22	  

c1	   r1	   r2	   b1	   b2	   a1	   a2	  

C	   E	  

CE	  

Contributes	  
(distance)	  

Contributes	  
(weight)	  

Halve(weight,	  
side_a)	  

Double(distance,	  
side_a)	  

Balanced(side_a,	  	  
side_b)	  

Balanced(side_b,	  	  
side_a)	  

Adversaries(	  
side_a,	  side_b)	  

Adversaries(	  
side_b,	  side_a)	  

distance	   weight	   side_a	   side_b	  

C1	   C1	   R1	   R2	   D1	   D2	   B.11	   B.12	   B.21	   B.22	   A.11	   A.12	   A.21	   A.22	  

c1	   r1	   r2	   b1	   b2	   a1	   a2	  

C	   E	  

CE	  

…	   …	   …	   …	   …	   …	   …	   …	   …	   …	   …	   …	   …	   …	   …	   …	   …	   …	   …	   …	   …	   …	  

ao2	  

…	  

ao1	  

…	  

d2	  

…	  

d1	  

…	  

Figure 2: The Analogs Used in Our Model. For simplicity, not all individual semantic units, propositions, or other
units are pictured here (see the appendix for full details on which units were used). Dotted lines represent units that
were recruited as a result of analogical inference.

marbles have an equal opportunity to win. Complemen-
tary to this understanding of balance is a likely notion
of an adversarial relationship between the two teams in
the game and the two sides of the balance beam. He
understands the concept of halving and doubling num-
bers, and that they are, to use Piagetian terminology,
reversible.4 He also understands that incrementing the
lesser of two items corrects a difference of one, an op-
eration that is reversed by removing one.

These objects and predicates suggest a possible set
of schemas we can use to create an analogical inference.
We can imagine a possible mapping by first describ-
ing Rog’s knowledge about the game of marbles as the
source analog (analog 1) and his BBT-related knowl-
edge as the target (analog 2). Some mappings seem
intuitive, and a possible list of these mappings are seen
in table 1.

This mapping, however, introduces a problem that
must be addressed before we continue. Whereas most of
the mappings should be relatively uncontroversial, the
final two pairs are not so straightforward. We know that
he understands the operations of adding one, remov-
ing one, doubling, and halving ; therefore, either both
analogs have access to these operations’ relevant pred-
icates, or we must explain why they do not. Assuming
Rog starts with the idea of halving the weight on one
side (which, recall, is the sub-problem we have decided
to tackle in this paper), he must solve something like
the analogy:

Removing one : Adding one :: Halving : O?

where the operation O? is some operation available to
him in analog 2. Solving this sort of problem requires

4However, reversibility, being a second-order relation-
ship, cannot be currently represented in LISA.

a relation P between Halving and Doubling which is
similar to, or the same as, the relation between Adding
one and Subtracting one, which we can at least partially
model through specially placed semantic connections.
But if all four operations are available to both analogs,
andP cannot be explicitly represented (as it is a second-
order relation), how can we ensure that the predicate
Doubling, rather than Adding one, is chosen? After
all, whatever similarities Doubling and Adding one have
(e.g., they both increase numerical value), nothing is
more similar to a predicate than itself.

At least two solutions seem plausible. In the first,
the filtering process that decides what predicates and
propositional knowledge to include in the analogs be-
fore analogical mapping and inference begins, must
include the predicate Doubling and exclude Adding
one. This might be as a result of similarity-based re-
trieval, which has been shown to be the primary pro-
cess used in analog retrieval (Gentner, Rattermann,
and Forbus 1993; Holyoak and Koh 1987; Ross 1989;
Hummel and Holyoak 1997; Gentner and Forbus 2011).
Rog starts knowing that the Halving operation will be
present in analog 2, and uses similarity-based retrieval
to also include the related Doubling operation. Since
there is no clear addition or subtraction present in the
BBT, the Adding one and Removing one predicates are
not retrieved.

The second possibility is that the unintuitive map-
ping of Adding one to Doubling is a simple accident—
perhaps a consequence of Rog’s still-developing analog-
ical reasoning ability. If so, this suggests that the full
version of this model, if tweaked to have the analogi-
cal reasoning ability of an adult, should be less likely
to form the same mappings as Rog. However, since
this likely has to do with the area of the model dealing



Table 1: Possible Mappings for Rog’s Analogy
Analog 1 Analog 2
Teams of players (a and
b)

Sides of the scale (a and
b)

Concept of balance (fair-
ness)

Concept of balance
(physical)

Adversarial relationship
between teams

Opposite relationship
between scale sides

Concept of contribution
(number of marbles con-
tributes to fairness)

Concept of contribution
(both weight and dis-
tance contribute to bal-
ance)

Adding one Doubling

Removing one Halving

with retrieval (which is still in development), we do not
address this possibility here.

We can now describe a model that can simulate the
setup of this inference, the carrying out of this analog-
ical inference, and the subsequent deductive reasoning
steps leading to Rog’s observed behavior. Formally, this
model can be seen as finding a proof of the following:

Given K, if C, then E
where:
• K is knowledge about the world. K involves knowledge

about source analogs the subject may have acquired else-
where (such as the rules of the game of marbles), knowl-
edge about the BBT, and and any other relevant knowl-
edge. K is also divided into analogs or domains, one of
which is Ltarget, the subset consisting of knowledge di-
rectly related to the BBT.

• B is knowledge describing the BBT. This may be a subset
of K.

• E (for “effect") is the goal state, consisting of propositions
describing the state of the successfully completed BBT.
Presumably this is provided by the experimenter.

• C is the goal, a set of propositions that are the result of
a successful application of our algorithm. C and E form
a cause-effect grouping, which means that if all of the
propositions in C are satisfied, then that will cause the
propositions in E to become satisfied as well.

We can assume that we start with K and G. The prob-
lem then becomes finding C (What needs to be true to
reach the goal state E?). Before explaining the details
of the algorithm, we first provide a high-level descrip-
tion as follows:
1. We are given K and E. Collect B and Ltarget, which

is a subset of K consisting of knowledge related
to the BBT, and an incomplete cause-effect group-
ing (ICEG) constructed from E (described in detail
shortly).

2. Determine the source analog (more on this shortly).
3. Construct Lsource, which is a subset of K involving

knowledge related to the source analog.
4. Perform analogical inference using LISA, which is a

mapping from Lsource to Ltarget that produces new
propositional information. This process, if successful,
returns a hypothesis H in the form of a cause-effect
grouping containing the conjunction of all proposi-
tions in E as its effect, and the conjunction of all
propositions in C as its cause; e.g.: If side a has half
the weight of side b, and side a has twice the distance
of side b, then the scale should balance.

5. Perform a consistency check, searching for contradic-
tions in K ∪ H. If one is found, then the algorithm
has failed.

Although the purposes of each of these steps should
be relatively straightforward, the implementation de-
tails require some elaboration. Certain assumptions are
made which simplify the implementation of the above
steps. K is already divided into analogs, each of which
cover a restricted domain of knowledge. One of these
domains is the BBT itself, and the corresponding analog
consists of knowledge Rog presumably obtains through
his interactions with the balance beam up until the
point at which the ADR process we model here be-
gins. Step two is also trivialized; we assume that some
psychological process caused Rog to decide that his fa-
miliarity with the rules of marbles would be useful in
understanding the behavior of the BBT.

Step four involves LISA performing analogical in-
ference using self-supervised learning, which requires
Lsource and Ltarget to conform to LISA’s structured
connectionist representation. However, since the steps
immediately preceding and following step four require
a form of knowledge representation which is appro-
priate for deductive inference (which we will conve-
niently refer to here as “deductive mode," or DM, as
opposed to “LISA mode," or LM), we must use a bi-
directional, knowledge-preserving transformation. This
is simple for both propositions and nested propositions
(e.g., Knows(John, Likes(Jack, Television)))). How-
ever, there are several types of knowledge which deserve
special consideration:

Grouped Propositions Because higher-order
groupings of propositions, such as those representing
causal relationships, are treated differently from nested
propositions in LISA (Hummel and Landy 2009),
they must be somehow represented differently from
nested propositions in DM. We use the specially
named predicate Grouping_Causes(p, q) to represent
a cause-effect grouping between propositions p and q,
and can create similarly named predicates if any other
groupings are necessary.

Incomplete Cause-Effect Groupings We assume
that Rog’s search is motivated by the question, pos-
sibly asked by the experimenter: What do you have



to do to make the scale balance? This question is
represented with an incomplete cause-effect grouping
(ICEG), which consists of a lone “Effect" grouping and
a set of minimal propositions (see analog 2 in Figure 2).
These propositions are the conditions of satisfaction of a
cause-effect grouping that provides a successful answer
to the question asked by the experimenter; alternately,
what propositions must be true to cause the scale to
be balanced? In this case, the relevant propositions are
trivially satisfied: If the scale is balanced, then side a
is balanced with side b, and side b is balanced with
side a. Note here that two propositions are needed to
express this relation, because given any two-argument
predicate A, for objects p, q, it is not necessarily true
that A(p, q) → A(q, p). A successful run involves both
the completing of the cause-effect grouping which sub-
sumes the ICEG, and the recruiting of any necessary
propositions to fill the corresponding “Cause" grouping.

Semantic Knowledge LISA achieves a simultane-
ously localist and distributed representation by link-
ing semantic units to instances of objects and predicate
roles wherever they appear. For example, the object
Dog might be connected to the semantic units hairy,
four-legged, and animal, among others. A predicate
such as Loves(p, q) has two roles: that played by the
first argument (the object which is the lover), and that
played by the second argument (the object which is
loved). Each of these roles is connected to a set of se-
mantic units, and those same sets are connected to the
roles more or less consistently in every analog where
a proposition containing the Loves predicate appears.
We say ‘more or less’ because as a result of contextual
shading, a given object or role may have slightly differ-
ent contexts in different contexts.

In other words, two objects or roles are separate to-
kens but of the same type if and only if the seman-
tic units to which they connect are the same. In or-
der to preserve this property, every object or role type
has a unique identifying semantic unit containing the
same name. Therefore, every instance of the Dog ob-
ject is connected to a semantic unit named Dog, and
every instance of the Rover object is connected to the
Rover semantic unit. However, even though Rover is a
dog, Rover is not connected to the Dog semantic unit;
rather, the relationship between the two objects is rep-
resented by the proposition Is_A(Rover,Dog).5

These unique identifying semantic units are not ex-
plicitly represented in DM, but are created for each ob-
ject in D when switching over to LM. They are then
removed when converting back to DM. The other se-
mantic connections, however, are preserved in DM, and
represented by the special predicate Semantic_Prop,
which associates each object inK with another specially
named semantic unit. Although the semantic units are
technically represented in DM as objects, they are not

5Note that this is not a requirement; rather it is the
approach we take in this paper, which is a departure from
Hummel and Holyoak (2003a; 2003b).

treated as such and are not part of K for the purposes
of this discussion.

First and Higher-order Knowledge It is indeed
likely that analogical reasoning occurs over knowledge
which requires representation in a logic more expressive
than the propositional calculus we have been using thus
far. We have already mentioned this, but to further
explicate the point, consider an example inspired by
Shakespeare’s Romeo and Juliet :
1. All Montagues hate Juliet.

2. Tybalt is a Capulet.

3. Therefore, all Capulets hate Romeo. (from 1)

4. Therefore, Tybalt hates Romeo. (from 3 and 2)

In this simple example, step three comes from step one
by way of analogical inference (although the domains
for both steps are the same, and it is a false analogy for
which a counterexample can easily be found by anyone
familiar with the play: Juliet herself is a Capulet who
does not hate Romeo). Yet note that representation for
the sentences in both steps requires at least first-order
expressivity, in order to perform the universal elimina-
tion and subsequent modus ponens that leads to step
four.

Although while in DM, statements in first and higher-
order logics may be allowed, at this time LISA does
not have the ability to represent knowledge beyond the
propositional calculus. As a result, we simply do not
attempt to convert such statements when switching to
LM. We hope to re-visit this problem in future work.

Inferred Units In self-supervised learning, LISA can
recruit new groups, propositions, predicates, or objects
in the target analog (we will alternately say these new
units were inferred). When converting from LM to DM,
we make use only of inferred propositions and groups,
as predicates and objects not referred to by any proposi-
tion have no effect on the space of deductive conclusions
that can be reached. Inferred propositions can either
use predicates that already exist in the target analog
(in which case they use the correct role bindings), or
new predicates which have been recruited. In the lat-
ter case, LISA assigns the new predicates names based
on the names of the predicates in the source analog to
which they map.

Inferred group propositions are treated similarly,
except they are given special predicate names such as
Grouping_Causes, as mentioned earlier.

Finally, step five subsumes the bulk of the deductive
reasoning. A successful run of step four (pictured in
Figure 2) will produce the hypothesis H:

Grouping_Causes(Double(distance, side_a) ∧
Halve(weight, side_a), Balanced(side_a, side_b) ∧

Balanced(side_b, side_a))

Or, restated, “the distance on side a being doubled and
the weight on side a being halved causes the scale to



balance." The resulting process first tries to use this
new proposition to deductively reach a contradiction,
in which case the process is regarded to have disproven
the hypothesis analogically inferred in step four. For ex-
ample, Rog may have the pre-existing (and false) belief
that if the propositions in C are true, then it causes the
negation of E to be true. This would clearly contradict
H.

If a contradiction is not found or a pre-set time limit
expires, then H can be tested by satisfying the propo-
sitions in C and observing to see if the propositions in
E become true as an effect.

Simulation Results
As a first step in testing the model’s viability, we de-
cided to test step four. This step involves finding an
analogical mapping which produces H, which is ar-
guably the most crucial step of the algorithm. Our test
case used the analogs pictured in Figure 2, which are
described in full in the appendix.

The initial results were straightforward—using cer-
tain patterns of proposition firings frequently produced
the correct inferred items, which encouraged some fur-
ther experimentation. The ability for LISA to find
the right mapping requires that the right informa-
tion be placed in the relevant analogs, which itself de-
pends completely on the accuracy of the data selec-
tion/filtering process (steps one through three). It is
important, then, to know precisely the extent of this de-
pendence: Would step four find relevant answers even
if Lsource and Ltarget were slightly different?

In order to explore this, step four was repeated with
certain propositions or predicates removed or added.
Each case was repeated 200 times: 100 trials with nor-
mal settings (n), and 100 with unlimited working mem-
ory (uwm). For all trials, the phase set in the appendix
was used.

A trial was regarded to be successful if the following
criteria were all met:

1. The proposition Double(distance, side_a) was in-
ferred in analog two.

2. A cause grouping C was formed in analog two, con-
taining at least of the newly inferred proposition
Double(distance, side_a), and the already existing
proposition Halve(weight, side_a).

3. C did not contain any proposition that recom-
mended impossible or in other ways contradic-
tory actions. For example, if the proposition
Adversaries(side_a, side_b) is a part of C, since
it is not impossible or contradictory (it is sim-
ply a restatement of another instance of the same
proposition, which was already coded in and hap-
pens to be true), C is still regarded to have been
successfully inferred. However, if the proposition
Balance(distance, side_a) is inferred, it is regarded
to be a nonsensical proposition and the trial is re-
garded to have failed.

Table 2: Trial Results. A trial was judged as correct if
it met all criteria. Propositions which were removed or
added are listed below the table.

Change Made % correct
(n)

% correct
(uwm)

A1: Removed proposition 1
from analog 2

35 32

A2: Removed proposition 2
from analog 1

0 0

A3: Removed proposition 3
from analog 1

8 4

A4: Removed propositions
3, 4 from analog 1

0 0

A5: Removed proposition 5
from analog 2

38 44

A6: Removed propositions
5, 6 from analog 2

66 71

A7: Removed propositions
3, 4 from analog 1, and 5, 6
from analog 2

55 54

C: No changes made 57 61

1. Contributing_Factor(weight)

2. Contributing_Factor(marbles)

3. Adversaries(team_a, team_b)

4. Adversaries(team_b, team_a)

5. Adversaries(side_a, side_b)

6. Adversaries(side_b, side_a)

4. A cause-effect grouping with C as the cause and E
as the effect is created in analog two.

Table 2 presents the most interesting of these trials. Ta-
ble 3 shows the results of a similar experiment which,
instead of modifying the propositional knowledge, mod-
ified the predicates available to each analog.

Assuming that small variations in the filtering steps
of our model’s algorithm affect the analogs used in step
4, this series of trials was done to examine whether these
small variations cause large effects in the success of the
overall model’s run. The control case for these trials
was the set of ideal (manually created) analogs listed
in the appendix. The success rates for the control case
are shown in the last row of Tables 2 and 3.

Because of the small sample size, it is not worthwhile
to place emphasis on small differences in the presented
data. That being said, it is interesting to note that re-
moving certain propositions had much more prominent
effects on the success rates. Trial A1 had an apprecia-
ble success rate, but trial A2 failed every single time;
not knowing that weight contributes to balance was less
harmful to success than not knowing that the number
of marbles played by each team contributes to fairness.

A similar result is observed in the difference between
trials A3 / A4, and A5 / A6. This difference suggests
one of two possibilities: either the correct mapping and
inference depend on knowledge of an adversarial rela-



Table 3: Trial Results. A trial was judged as correct if
it met all criteria. Predicates which were removed or
added are listed below the table.

Change Made % correct
(n)

% correct
(uwm)

B1: Added predicates 1, 2
to analog 1

51 59

B2: Added predicate 1 to
analog 1

61 64

B3: Added predicate 2 to
analog 1

64 54

B4: Added predicates 3, 4
to analog 2

0 0

B5: Added predicate 3 to
analog 2

0 0

B6: Added predicate 4 to
analog 2

63 62

B7: Added predicates 1, 2
to analog 1, and 3, 4 to ana-
log 2

0 0

C: No changes made 57 61

1. Halve

2. Double

3. Add_One

4. Remove_One

tionship between the two teams of the game of marbles,
which doesn’t apply to knowledge of an adversarial re-
lationship between the two sides of the balance beam;
or this particular mismatch has some effect on the map-
ping algorithm that causes the process to fail.

To investigate this further, trial A7 was carried out.
Its results suggested the latter possibility, but raises fur-
ther questions. Why does the mapping fail so consis-
tently when the Adversaries propositions are missing
from analog one, but not when they are missing from
analog two? We do not have a clear answer to this ques-
tion, but it is likely an idiosyncrasy of this particular
set of analogs. In any case, this oddity illustrates the
difficulty in determining which propositions should be
included in each analog.

Moving on to table 3, we observe that the trials
with non-zero success rates do not differ from the con-
trol case (trial C) to a statistically significant figure.
The three trials which have zero success rates all have
one thing in common, which the other trials lack—
they all involve the addition of the Add_One predi-
cate to analog 2. Intuitively, this makes sense, as the
Double(distance, side_a) proposition we want to be
recruited into analog 2 must map to the proposition
Add_One(marble, team_a) in analog one; and noth-
ing has more semantic units in common with a predi-
cate than that predicate itself. Indeed, the results for
trial B5 show a lot of cases in which the proper cause-
effect groups were made, but the proposition inferred
was Add_One(distance, side_a)—not the correct out-

put, but one that is part of a valid and testable hy-
pothesis. It is interesting to consider that future work
on the analogical mapping step may rectify this issue;
allowing second-order relations, including the missing
second-order knowledge we have already discussed in
this paper, could lead to the correct output.

Finally, in true Piagetian fashion, it would be remiss
of us not to discuss the errors themselves.6 In suc-
cessful cases, the marble object in analog one mapped
to the distance object in analog two. However, a fre-
quent error was to infer the existence of a new object,
marble′, in analog 2. This allowed the (rather fre-
quent) recruiting of the erroneous inferred proposition
Double(marble′, side_a). In a more intuitive fashion,
this proposition might be restated as the following: In
the domain of the balance beam, there exists a concept
(marble′), which is analogous to marbles in the game
of marbles.

The results all seem to point to one glaring fact: this
model’s ability to reach the success condition will de-
pend heavily on the filtering steps. It is for this reason
that steps one through three will be the primary em-
phasis of future work on this model, which we elaborate
on in the next section.

General Discussion and Future Work
Gentner and Forbus (2011) discuss a common prob-
lem with analogical models, which they call the “tai-
lorability concern." Designers of analogical systems too
often (sometimes without knowing it) carefully over-
customize the input data for their example cases, in
order to produce successful outcomes. This tends to
limit the scope of possible problems that the system
can successfully solve autonomously.

We very much sympathize with this concern, and
given our careful selection of input data throughout this
paper, acknowledge the inapplicability of this model
in its current state to general problem solving. Gen-
tner and Forbus offer at least one solution: "[U]se pre-
existing databases and automatic (or semi-automatic)
parsing and semantic representation of the input" (Gen-
tner and Forbus 2011). This is a path which we hope
to take as work continues on this model.

For example, integration with a larger cognitive
model that allows for the simultaneous representation
of rich semantic data, and symbolic, logical knowledge
(such as CLARION (Sun 2002)) might offer us a way
to automatically parse and manage large bases of infor-
mation. The similarity-based and other retrieval mech-
anisms within such an architecture could then be incor-
porated into the filtering steps of our algorithm. Ar-
chitectures which already have natural language pro-
cessing functionality (such as Polyscheme (Cassimatis
2006)) can expedite the process of importing data from

6Part of Piaget’s genius was his ability to not only notice
when children made errors in reasoning, but to closely scru-
tinize both the types and causes of these errors.(Chapman
1988)



various sources; it would certainly be very interesting to
see if the sorts of natural-language justifications given
by such a system correspond to those observed in the
classic Piagetian literature.

Appendix : Analogs Used
Analog A
Predicates The following listing is formatted as fol-
lows: The predicate name, followed by the seman-
tic unit(s). For each semantic unit, two copies are
made: one which connects to each role of the pred-
icate. For example, Remove_One has two semantic
units connected to its first role: remove_one1, and
makes_smaller1. Its second role connects to the se-
mantic units: remove_one2, and makes_smaller2.
The only exception is Contributing_Factor, which
only has one role.

• Remove_One - remove_one, makes_smaller

• Add_One - add_one, makes_bigger

• Adversaries - adversaries

• Balanced - balanced1, balanced2

• Contributing_Factor - cf1, cf2

Objects The objects are listed along with their se-
mantic units.

• team_a - ta1, ta2

• team_b - tb1, tb2

• player - p1, p2

• marble - m1, m2

Propositions The proposition’s identifier is listed,
followed by the actual proposition.

• P1 - Remove_One(player, team_a)

• P2 - Add_One(marble, team_a)

• P3 - Balanced(team_a, team_b)

• P4 - Balanced(team_b, team_a)

• P5 - Adversaries(team_a, team_b)

• P6 - Adversaries(team_b, team_a)

• P10 - Contributing_Factor(marble)

• P11 - Contributing_Factor(player)

Groups The group identifier is listed, then the propo-
sitions and/or groups which are members, followed by
the semantics of that group (in parentheses).

• G1 - P1, P2 (cause)

• G2 - P3, P4 (effect)

• G3 - G1, G2 (cause-relation)

Analog B

Predicates

• Halve - halve, makes_smaller

• Double - double, makes_bigger

• Adversaries - adversaries

• Balanced - balanced1, balanced2

• Contributing_Factor - cf1, cf2

Objects The objects are listed along with their se-
mantic units.

• side_a - sa1, sa2

• side_b - sb1, sb2

• weight - w1, w2

• distance - d1, d2

Propositions The proposition’s identifier is listed,
followed by the actual proposition.

• P1 - Halve(weight, side_a)

• P3 - Balanced(side_a, side_b)

• P4 - Balanced(side_b, side_a)

• P5 - Adversaries(side_b, side_a)

• P6 - Adversaries(side_a, side_b)

• P10 - Contributing_Factor(weight)

• P11 - Contributing_Factor(distance)

Groups

• G2 - P3, P4 (effect)

Phase Set

The phase set, or the order in which the propositions
fire, was as follows:

1. With analog 1 as source and 2 as target, fire 10 ran-
dom propositions.

2. With analog 2 as source and 1 as target, fire 10 ran-
dom propositions.

3. Begin self-supervised learning. LISA is now autho-
rized to recruit new units if necessary.

4. With analog 1 as source and 2 as target, fire 15 ran-
dom propositions.

5. With analog 2 as source and 1 as target, fire 15 ran-
dom propositions.

6. With analog 1 as source and 2 as target, fire 15 ran-
dom propositions.

The above sequence was repeated 100 times per trial.
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