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Abstract

This paper presents MetriCat, a model of the human capacity to recognize objects both as members
of a general class (e.g., "chair") and as specific instances ("my office chair"), and of the role of
visual attention in this capacity.  MetriCat represents the attributes of an object's parts and their
relations in a nonlinear fashion that provides a natural basis for recognition at both the class and
instance levels (Stankiewicz & Hummel, 1996).  Like previous structural description models (e.g.,
Hummel & Biederman, 1992), MetriCat represents part attributes and relations independently,
dynamically binding them into structural descriptions.  The resulting representation suggests two
roles for visual attention in shape recognition: attention for binding and attention for signal-to-noise
control.  MetriCat implements both functions as special cases of a single mechanism for controlling
the synchrony relations among units representing separate object parts.  The model accounts for the
time course of class- and instance-level classification, and makes several predictions about the
relationships between attention, time, and levels of classification.



Two Roles for Attention in Shape Perception:
A Structural Description Model of Visual Scrutiny

Human object recognition is remarkably flexible.  Upon viewing a novel instance of a
known object class, it is usually possible to recognize the object immediately as a member of that
class.  For example, in a furniture store we effortlessly recognize the chairs as chairs, the tables as
tables, and so forth, even if we have never seen those specific chairs or tables before.  At the same
time, it remains possible to tell the difference between one chair and another.  Although these
observations conform closely to common sense, it is challenging to understand how the visual
representation of shape makes this kind of multi-level classification possible (Marr, 1980).
Computational models of object recognition are divided with respect to their capacity to account for
classification at different levels of abstraction.  Models based on categorical structural descriptions
(Biederman, 1987; Dickenson, Pentland & Rosenfeld, 1992; Hummel & Biederman, 1992;
Hummel & Stankiewicz, 1996a) provide a natural account of our ability to recognize objects as
members of general classes (e.g., “chairs”), but do not provide a clear basis for distinguishing
similar members of the same class.  View-based models (Bülthoff & Edelman, 1992; Bülthoff,
Edelman & Tarr, 1995; Edelman, Cutzu & Duvdevani-Bar, 1996; Poggio & Edelman, 1990; Tarr,
1995) are adept at classifying objects as individual instances, but are not well-suited to account for
our ability to recognize novel instances of known object classes.  A clear computational account of
how both instance- and class-level recognition obtain simultaneously has yet to be developed.

A related question concerns the role of visual attention in shape perception and object
recognition.  A growing body of evidence suggests that we can recognize objects without attending
to them (Tipper, 1985; Tipper & Driver, 1988; Treisman & DeShepper, 1996).  However, this does
not imply that attention plays no role in object recognition.  Attention is known to play an important
role in many basic visual tasks, including feature selection (see Bundeson, this issue) and visual
binding (e.g., Treisman, 1982; Treisman & Gelade, 1980; but see Kanwisher & Wojculik, this
volume).  Using a priming paradigm, Stankiewicz, Hummel and Cooper (1997) recently showed
that attention also plays a role in the visual representation of object shape.  Specifically, we found
that attended images visually prime both themselves and their left-right reflections, whereas ignored
images prime only themselves (see also Stankiewicz & Hummel, 1997).  Thus, although it does not
determine whether an object will be recognized, attention seems to affect the qualitative form of the
visual representations mediating recognition.  This fact suggests the beginnings of an answer to the
question of how we recognize objects at multiple levels of abstraction: Perhaps attention serves to
"tune" the representation of object shape, alternating between coarse, categorical representations
(e.g., for class-level recognition) and more precise representations (e.g., for instance-level
classification).  This idea is intuitive, and similar ideas have been proposed before (e.g., Biederman,
1987; Hummel & Stankiewicz, 1996a; Marr, 1980; Olshausen, Anderson & Van Essen, 1993).  But
to turn this intuitive idea into a falsifiable theory, it is necessary to specify both the form of the
visual representations that are subjected to this attention-based "tuning", and the nature of the
attentional mechanisms that perform the tuning.

This paper presents MetriCat (for metric and categorical properties), a model of shape
recognition addressed to the question of how we recognize objects at multiple levels of abstraction
(Stankiewicz & Hummel, 1996), and to the role of visual attention in this capacity.  MetriCat is an
extension of our previous work on structural descriptions of object shape (Hummel & Biederman's,
1992, JIM, and Hummel & Stankiewicz's, 1996a, JIM.2).  Like JIM and JIM.2, MetriCat represents
object shape in terms of the qualitative properties of volumetric parts (i.e., geons; Biederman, 1987),
and the qualitative relations among them.  Also like its predecessors, it represents geon attributes
and relations independently of one another.  These properties give MetriCat the capacity for class-
level recognition enjoyed by models based on categorical structural descriptions.  However,
MetriCat differs from these models in that its representation of shape attributes and relations is not
strictly categorical.  Rather, part attributes and relations are represented in a nonlinear form that
emphasizes differences across categorical boundaries without discarding all metric information
within those boundaries.  This property permits the model to represent and match object shape at



multiple levels of numerical specificity, and provides a natural basis for classifying objects at
multiple levels of abstraction (Stankiewicz & Hummel, 1996).

This approach to the representation of object shape suggests two separate but related roles
for attention in shape perception.  Coding part attributes independently of their relations makes it
necessary to bind them dynamically (i.e., actively) into part-based groups (Hummel & Biederman,
1992).  Attention is known to play a central role in binding independent visual attributes (see
Schneider, 1995 for a thorough review), and therefore figures prominently in the generation of
structural descriptions from object images (Hummel & Biederman, 1991, 1992; Hummel &
Stankiewicz, 1996a; Stankiewicz, et al., 1997; see also Logan, 1994).  Like its predecessors,
MetriCat requires attention to bind attributes into parts-based structural descriptions (although it
implements attention more explicitly than either JIM or JIM.2).  It also uses attention to generate
the metrically-detailed representations that permit classification at progressively finer levels of
specificity (e.g., from chair, to office chair, to my office chair).  Both these operations—attribute
binding, and the generation of detailed representations of shape—are performed by a single
mechanism: namely, by enhancing the ability of object parts to inhibit one another in the
competition for binding and processing resources.  The model's attention mechanism thus unifies
the binding and selective processing functions performed by visual attention (see Schneider, 1995).
(However, we should note that the model is not intended as a general theory of visual attention.
Among other things, it is not explicitly addressed to phenomena such as location-based visual
search, visual neglect following brain damage, etc.  Rather, our current focus is strictly on the role of
attention in the representation and classification of object shape.)  The resulting model makes
testable predictions about the roles of time and attention in recognition at different levels of visual
specificity, suggests a specific basis for intelligent search for diagnostic features for subordinate-
and instance-level classification, and generates testable predictions about the relationship between
levels of classification and the effects of viewpoint on recognition performance.

Theories of Object Recognition

Recent theories of object recognition fall into two general classes with respect to their ability
to account for shape classification at different levels of abstraction.  One class of theories assumes
that objects are represented as structural descriptions specifying an object's parts in terms of their
categorical attributes and relations to one another (Biederman, 1987; Dickenson, et al., 1992;
Hummel & Biederman, 1992; Hummel & Stankiewicz, 1996a).  For example, a table might be
represented as a horizontal slab on top of four vertical posts; a coffee mug might be represented as
a squat vertical cylinder with a curved cylinder end-attached to its side (see Biederman, 1987).
Categorical representations of this type have several desirable properties, including robustness to
noise and variations in viewpoint, and a natural capacity to generalize over variations in object shape
(see Biederman, 1987; Pinker, 1984).  As a consequence, they provide a natural account of the
human ability to recognize objects in novel viewpoints (Biederman & Cooper, 1991a, 1992;
Biederman & Gerhardstein, 1993; Cooper, Biederman & Hummel, 1992), our ability to recognize
objects in the presence of noise or occlusion, and our ability to recognize novel instances of known
object classes (Biederman, 1987; Clowes, 1967).  Some structural description models also account
for a variety of more subtle properties of human shape perception, including the role of convex
parts in shape perception (Biederman, 1987; Biederman & Cooper, 1991b; Hoffman & Richards,
1985; Tversky & Hemenway, 1985), the role of categorical relations in shape perception and object
recognition (Hummel & Stankiewicz, 1996b; Saiki & Hummel, 1996), and the role of time and
attention in shape perception and object recognition (Hummel & Stankiewicz, 1996a; Stankiewicz et
al., 1997).

For the same reason that they support recognition at the level of object classes, categorical
structural descriptions are insufficient to make some within-class distinctions.  For example, a
categorical structural description of a robin would be indistinguishable from a categorical structural
description of a blue jay: On the basis of such a description alone, both objects would simply be
recognized as birds.  In such cases, people search for distinguishing features (such as the red breast



on the robin, or the blue crest on the jay) as a basis for classifying these objects at the subordinate-
levels of "robin" and "blue jay" (Biederman, 1987; Biederman & Schiffrar, 1987).  But while such
features play a critical role in subordinate-level recognition, it is unlikely that they constitute our
only basis for distinguishing structurally similar objects.  Although it is difficult, we can
discriminate objects that differ only in their metric properties (Bülthoff & Edelman, 1992; Edelman
et al., 1996; Hummel & Stankiewicz, 1996b).

In contrast to structural description models, view-based models represent objects as holistic
"views" specifying the 2-D coordinates of their features as they appear in specific views (Bülthoff
& Edelman, 1992; Bülthoff at al., 1995; Edelman et al., 1996; Poggio & Edelman, 1990; Tarr, 1995;
Vetter, Poggio & Bülthoff, 1994).  This approach differs from the structural description approach
in that (a) there is no explicit decomposition of an object into its parts, and (b) an object's features
are represented in terms of their numerical coordinates in the view, rather than their categorical (e.g.,
"above/below") relations to one another.  This kind of representation is metrically precise and
information-rich, making it suitable for distinguishing structurally similar objects (Bülthoff et al.,
1995; Tarr, 1995).  There is substantial support for the idea that some instance-level classification
tasks—most notably face recognition—are mediated by this type of holistic representation of object
shape (e.g., Farah, 1992; Tanaka & Farah, 1993).  In addition, there is evidence for the role of view-
like representations in our capacity to recognize objects without attending to them (Stankiewicz et
al., 1997), although the views implicated in automatic recognition may differ substantially from the
metrically precise, information-rich representations postulated in current view-based models (see
Hummel & Stankiewicz, 1996a).

If the view-based approach provides a general account of instance-level classification (i.e.,
beyond the case of faces and similar objects), then our capacity for multi-level classification may
simply reflect the simultaneous operation of both views (for instance recognition) and structural
descriptions (for class recognition).  However, not all subordinate- or instance-level recognition is
performed on the basis of holistic views.  For example, Biederman and Schiffrar (1987) showed
that categorical features play the central role in chick-sexing1, a decidedly subordinate-level
classification task, and Hummel and Stankiewicz (1996b) report evidence against the role of holistic
views in the recognition of structurally-similar objects.  Thus, although holistic views likely play an
important role in face recognition, and although diagnostic categorical features likely play an
important role in subordinate- and instance-level recognition, neither proposal provides a complete
account of our ability to recognize objects at multiple levels of abstraction.  As such, we believe it is
worth considering alternative explanations for this capacity.

A Unified Model of Instance- and Class-Level Recognition
As noted previously, categorical representations (as postulated in structural description

theories) naturally support recognition at the entry- or class-level, while metrically-rich
representations (as postulated in view-based theories) naturally support instance- and subordinate-
level recognition.  MetriCat is based on a single representation that captures both these properties.
The basis of MetriCat is a simple extension of the representations postulated in categorical
structural description models.  A categorical representation entails a nonlinear mapping from a
stimulus domain to the perceptual representation of that domain.  For example, consider an image
containing two figures, A and B.  The relation Above(A, B) is strictly categorical if it evaluates to
true (or 1) for all locations of A and B such that YA (the location of A on the vertical axis, Y) is
greater than YB, and to false (or 0) for all locations such that YA ≤ YB.  In this case, the mapping
from the stimulus domain (coordinates in the image) to the relation is a step function (i.e., Above(A,
B) is 1 for all (YA - YB) > 0, and 0 for all  (YA - YB) ≤ 0).  A step function is strictly categorical in
the sense that its value (0 or 1) changes only at the categorical boundary (i.e., the derivative is
infinite at the categorical boundary and zero everywhere else), discarding all information on either
side of the boundary.  However, a step is a special case of a more general class of nonlinear

1Chick-sexing is the task of deciding, on the basis of the appearance of the genetalia, whether a given chick is male
or female.



functions whose derivative is a maximum over some point (such as a categorical boundary), and
reduced elsewhere.  A common example is the logistic function:

y =
1

1+ e−x . (1)

Like a step function, y changes fastest over a single point in x (specifically, x = 0), but unlike a step,
it continues to change (although progressively less) as x deviates further from zero.  This "softer"
nonlinearity is meaningfully categorical in that, like a step function, it emphasizes differences across
categorical boundaries (e.g., from Above to Below).  (Indeed, in the literature of categorical
perception, this kind of function is the behavioral manifestation of categorical perception; see, e.g.,
Foster & Ferraro, 1989).  But the logistic function has the advantage that it does not discard all
information on either side of the boundary.

We argue that extant structural description models are insufficient for instance-level
recognition largely because they are based on categorical properties defined by step functions.
MetriCat uses logistic (rather than step) nonlinearities to represent categorical properties (such as
whether one part is above or below another, and whether a geon's major axis is straight or curved).
In other respects, MetriCat is like its predecessors, JIM and JIM.2: It represents part attributes and
relations explicitly and independently, and binds those properties into relational structures
dynamically; that is, the representations in MetriCat are structured rather than holistic (see Hummel
& Biederman, 1992).  The resulting representations have all the advantages of a categorical
structural description, but also permit fine metric discriminations when necessary.  In combination
with an appropriate set of routines for matching these representations to object memory, the result is
unified account of both class- and instance-level recognition.  Moreover, this approach to
representing object shape suggests a unifying account of two seemingly different functions of
visual attention.  In MetriCat, a single mechanism controls attention for binding (e.g., as discussed
by Treisman and others) and attention for signal-to-noise control (e.g., as discussed by LaBerge
and others).

Assumptions and Relation to Prior Work
The focus of the MetriCat model is the representation of object shape and the operations

that match those representations to memory.  (Specifically, it is an extension of the upper layers of
JIM and JIM.2, which are responsible for shape representation and object classification; the lower
layers of these models are responsible for image segmentation, etc.)  MetriCat takes a description of
an object's parts and their spatial relations as input.  Rules for segmenting images into part-based
groups, and for recovering the parts' attributes and spatial relations are described elsewhere
(Dickenson et al., 1992; Hummel & Biederman, 1992; Hummel & Stankiewicz, 1996a), so for the
purposes of the current model, we shall simply assume that these operations have taken place.

Overview
As input, MetriCat takes a numerical representation of a geon's shape attributes and

relations to other geons (Figure 1, "Input").  One such pattern is given for each geon in an object.
In the model's first layer (Figure 1, "Layer 1"), separate collections of units respond to: (1) the
parallelism of a geon's sides, (2) the curvature of its major axis, (3) the curvature of its cross section,
(4) its aspect ratio, the (5) pointedness of its major axis (i.e., is the major axis pointed, as in a cone,
or truncated, as in a cylinder or funnel), (6) whether the geon is above or below any other geons,
and (7) whether it is beside or centered on any other geons.  (This is an admittedly simplified set of
attributes.  Among other potentially important properties, we are omitting the geons' connectedness
relations.  For a richer set of geon and relation descriptors, see Biederman, 1987.)  Shape attributes
and relations are represented independently, in the sense that separate collections of units represent
separate attributes.  Units are bound into geon-based sets by synchrony of firing (Hummel &
Biederman, 1992): If two units "fire" (i.e., become active) in synchrony with one another, then they
are treated as properties of the same geon; if they fire out of synchrony, then they are treated as
belonging to separate geons.  Synchrony and, more importantly, asynchrony are established by
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Figure 1.  The MetriCat architecture.  As input, the model takes a numerical description of an object in terms of its
constituent geons and their interrelations (Input).  Geon attributes grouped by synchrony induced by the action of
oscillatory gates (Grouping by Synchrony).  Each geon is characterized by five shape attributes, parallelism of
main axis (Ax.Paral.), curvature of main axis (Ax.Cur.), curvature of cross section (XSn.Cur.), aspect ratio
(Aspect), and pointedness of main axis (Ax.Point), and two spatial relations, above/below (Above) and
centered/beside (Beside).  The numerical value of each attribute is passed through a logistic nonlinearity (Attribute
Code), the result of which is represented on a bank of 50 units in the model's first layer (Layer 1).  Patterns of
activation in Layer 1 activate Geon Feature Assembly (GFA) units with Gaussian receptive fields in Layer 2.
Patterns of activation on GFA units activate object units with Gaussian receptive fields (Layer 3).  GFA and object
unit have Gaussian receptive fields with different standard deviations.



means of oscillatory gates associated with the geons: The gates interact so as to "open," sending the
properties of the corresponding geon to the model's first layer, one at a time.  There is evidence for
synchrony-based binding in biological visual systems (see König & Engel, 1995, for a thorough
review).

In broad strokes, the model works as follows.  When an object is presented for recognition,
it's geons begin to fire out of synchrony, generating separate patterns of activation on the attribute
and relation units in Layer 1.  In the best case, one geon will fire at a time, but as described shortly,
the geons' ability to fire cleanly out of synchrony is a function of how much "attention" is directed
to the object.  The model's second layer (Layer 2) consists of Geon Feature Assembly units (GFA
units; Hummel & Biederman, 1992) that take their inputs from the attribute and relation units,
thereby responding to particular geons in particular relations to other geons.  The model's third
layer (Layer 3) consists of object units that take their inputs from the GFA units.  Object units sum
their inputs over time, "reassembling" a collection of GFAs (geons in particular relations) into a
representation of a whole object.

GFA and object units (classifier units) have Gaussian receptive fields (RFs) in their input
spaces, where the mean of the Gaussian determines a unit's preferred input pattern, p, and the
standard deviation, σ, determines the unit's tolerance for deviations from that pattern (see Poggio &
Girosi, 1990).  GFA units have RFs in the space of geon attributes and relations, and object units
have RFs in the space of GFAs.  Classifier units with wide RFs (i.e., large σ) respond to a wider
range of inputs than units with narrow RFs; that is, wide units are better able to tolerate to deviations
from their preferred patterns than are narrow units.  This variable-tolerance encoding has several
important implications.  First, classifier units with wide RFs respond to whole classes of objects,
whereas units with narrow RFs tend to respond selectively to individual instances (Stankiewicz &
Hummel, 1996).  Second, wide (class-level) units are able to respond earlier in processing than
narrow (instance-level units) units (as elaborated shortly).  As a result, MetriCat predicts that
objects will be recognized at the class-level before they are recognized as individual instances.  And
third, wide units are more robust to noise in their input vectors, and are therefore better able to
respond when an object is not fully attended: MetriCat predicts that greater attention (e.g., visual
scrutiny) is required to recognize objects at the instance level.  Each of these properties is illustrated
and elaborated in the Simulations section.

Representation of Attributes and Relations
Each attribute (or relation) is represented by a bank of units that coarsely code the numerical

value of that attribute (Figure 2).  The coded value for any attribute is obtained by passing the
attribute's raw numerical value through a logistic function (Hummel & Stankiewicz, 1996b;
Stankiewicz & Hummel, 1996).  For example, consider the relation Above(i, j), which codes the
location of geon i relative to geon j on the vertical image axis, Y.  PY(i, j) is the scaled location of i
relative to j on Y:

PY(i,j) = (Yi - Yj)/(lYi+ lYj), (2)
where Yi  and Yj are the Y-coordinates of the centroids of i and j, respectively, and lYi and lYj are the
lengths of i and j along Y.  PY(i, j) is unbounded.  It will be negative whenever i is below j, and
positive whenever i is above j.  Scaling P by the parts' lengths makes it scale-invariant: P will not
change with the absolute size of the object's image.  Human object recognition is also scale-
invariant in this way (Biederman & Cooper, 1992).  For an image of a fixed size, PY(i, j) changes
linearly with the location of geon i relative to geon j along Y.  Above(i, j), the above/below location
of i relative to j that is used for shape classification, is computed by passing PY(i, j) through the
logistic function:

Above(i, j)
  
=

1

1+ e − PY(i, j )
, (3)

where  is a scaling constant.  Although PY(i, j) is unbounded, Above(i, j) is bounded between 0
and 1; it will be less than 0.5 whenever i is below j (i.e., when P < 0) and greater than 0.5 whenever i
is above j(when P > 0).  Like a categorical relation, Above() changes fastest about the categorical



boundary, P = 0 (where Yi = Yj).  However, as noted previously, Above() does not discard all metric
differences within categorical boundaries.   determines the steepness of Above() about the
categorical boundary P = 0; when  = ∞, Above() is a step function that evaluates to 0 for all P < 0
and to 1 for all P > 0.
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Figure 2.  Detail of the representation of object attributes (in Layer 1), illustrated with the relation Above.  The
raw value of an attribute or relation is passed through a logistic nonlinearity, and the resulting value is coarsely
coded on 50 units with Gaussian receptive fields in the space of logistic values (0..1).  Units are depicted as
circles, receptive fields are depicted as Gaussian curves attached to the circles, and activation as shades of gray,
with more active units depicted in darker shades.  The relation represented corresponds to PY(i, j) = 0.5, or "geon i

is above geon j at a distance that is 1/2 the sum of their heights."

The left-right relation, Beside, is computed in the same way as the Above relation, except that
left/right distinctions are discarded, so the function effectively computes centeredness vs. off-
centeredness with respect to the horizontal axis:

Beside(i, j)
  
= 2

1

1+ e− P X ( i , j )
− 0.5

 
 

 
 . (4)

As a result, Beside(i, j) is invariant with left-right reflection (Hummel & Biederman, 1992).  It
evaluates to zero when geon i is exactly centered on geon j (on the X axis), and to values closer to
1.0 as i moves farther to the left or right j.

Equations (3) and (4) express the functions for computing all attributes in MetriCat.  Eq.
(3) expresses the form for any attribute with two continuous regions separated by a categorical
boundary.  These include the Above relation (one geon can be more or less extreme in its location
either above or below another geon) and aspect ratio (a geon can be more or less squat [e.g., a coin
is a squat cylinder] or more or less elongated [e.g., a pipe is an elongated cylinder]).  Eq. (4)
expresses the form for an attribute with one continuous region and one singularity.  For example, in
the case of the Beside relation, off-center (or "beside") is a continuous region and centered is a
singularity (a geon can be more or less distant from the midline of another, but there is only one



point where it is exactly centered).  Most of the properties in MetriCat are of this latter variety.
These include parallel sides (singularity) vs. non-parallel sides (continuous), straight cross section
(singularity) vs. curved cross section (continuous), pointed major axis (singularity) vs. truncated
major axis (continuous), and straight major axis (singularity) vs. curved major axis (continuous).

The model's input layer consists of seven banks of units (one bank for each attribute), each
with 50 units.  Units within a bank respond to logistic values given by (3) and (4) (depending on
the attribute).  Units have Gaussian receptive fields over the range of logistic values (0..1) with
varying centers (means) and receptive field sizes (standard deviations).   As illustrated in Figure 2,
the result is a population coding for the logistic value of each attribute (Stankiewicz & Hummel,
1996).

Model Operation

The model's operation is described here only in general terms.  The details of its operation
(including equations and operating parameters) are given in the Appendix.

Oscillators and Visual Attention:  An object's geons are induced to fire out of
synchrony by means of a collection of oscillatory gates.  There is one gate associated with each
geon.  By virtue of the interation between an excitatory unit (Ei) and an inhibitory unit (Ii), each
gate, i, oscillates between a state of activity (Ei > 0), in which the gate is "open", and inacitvity (Ei =
0), in which the gate is "closed" (see Hummel & Stankiewicz, 1996a; von der Malsburg & Buhman,
1992).  When a gate is open (i.e., Ei, > 0), the attributes of the corresponding geon are represented
on the attribute units.  If more than one gate opens at a time, then the attributes of multiple geons
will be superimposed on the attribute vectors.  The result is a binding error (or "superposition
catastrophe"; von der Malsburg, 1981), because it is impossible to determine which attributes
belong together as properties of the same geon.  The gates act to prevent such errors by inhibiting
one another, thereby opening (or "firing") at different times (i.e., out of synchrony with one
another; Figure 3c).
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Figure 3.  Simulation results illustrating the effect of attention (α) on MetriCat's ability to make separate geons

fire out of synchrony.  Each frame shows the activation of four gates (E1..E4) as a function of time and α.

Activation (Ei = 0..1) is depicted on the ordinate of each curve.  (a) With α = 0 (no attention) all four gates (geons)

fire in synchrony with one another.  (b) With α = 0.5 (limited attention), the gates fire out of synchrony, but there

is substantial overlap in their activity.  (c) With  α = 1.5 (strong attention), the gates fire cleanly out of
synchrony.

The model's ability to keep separate geons firing out of synchrony with one another is
dependentr on the gates' ability to inhibit one another.  In turn, the lateral inhibition between the
different gates is modulated by a global parameter, α.  Figure 3 illustrates the effect of α on the
gates.  When α is large (e.g., 1.5), the gates inhibit one another strongly and therefore fire cleanly
out of synchrony (Figure 3c); when α is zero, the gates cannot inhibit one another at all, and
therefore never fire out of synchrony (Figure 3a); at intermediate values of α, the gates fire
somewhat out of synchrony (Figure 3b).  We assume that α is proportional to the amount of
attention  directed to an object.  Our claim is that the function of attention (at least in the context of



object recognition) is to enable separate groups of units to fire out of synchrony with one another.
In so doing, attention serves both to control the dynamic binding of geon attributes and relations
(Hummel & Biederman, 1991, 1992; Hummel & Stankiewicz, 1996a), and to control the signal-to-
noise ratio of attended objects (e.g., LaBerge & Brown, 1989): Note that the pattern of asynchrony
is cleaner for "strongly-attended" objects (Figure 3c) than for “weakly-attended” objects (Figure
3b).  The effect of α on model performance is discussed in greater detail in the Simulations section.

Coarse Coding of Attribute Values:  Each geon attribute is represented as a pattern of
activation distributed over a bank of 50 attribute units (Figure 2).  Attribute units have overlapping
receptive fields over the range of logistic values of the corresponding attribute (Eq. (3) or (4),
depending on the attribute).  A complete geon is represented by a 350-dimensional (50 units X 7
attributes) vector, a.

Part Classification: GFA units have Gaussian RFs in the 350-dimensional space of
attribute units.  Each GFA unit receptive field has a mean, p, a vector that corresponds to the unit's
preferred stimulus pattern, and a standard deviation, σ, which defines the width of the unit's receptive
field (i.e, its tolerance for deviations from p).  The simulations reported here were run with three
sizes of GFA unit RFs,  = 0.10, 0.25, and 0.35.   Units with small  respond to very specific
attribute vectors (i.e., to parts with specific shapes in specific relations); those with larger  respond
to a broader range of vectors (and thus to a broader range of part shapes and relations).

Object Classification: GFA units sum their outputs over time.  Object units have
Gaussian RFs in the space of GFA unit outputs.  As a result, object units respond to collections of
GRA units, reassembling an object's parts into a representation of the object as a whole (see
Hummel & Biederman, 1992).  There were two sizes of object unit RFs in the simulations reported
here,  = 0.10 and 0.5.

Simulations

Simulation Procedure
We trained the model to recognize 16 objects, comprising four instances of each of four

classes.  As illustrated in Figure 4, we will refer to the classes as teapots, lamps, cars, and nonsense
objects.  Table 1 shows the attribute values of each part of each object.  Each instance differed from
the next nearest member of its class by 0.5 raw2 units on one critical attribute dimension (Table 1).
The teapots differed in the aspect ratio of the truncated cone (raw values 1.0, 1.5, 2.0 and 2.5 for
teapot1..teapot4, respectively), the lamps differed in the degree of non-parallelism of the shade (raw
values 1.0..2.5), the cars differed in the aspect ratio of the chassis (-2.5..-1.0), and the nonsense
objects differed in the curvature of the curved cylinder (1.0..2.5).

Training took place in two steps.  The model was first trained to classify the individual
object parts by presenting each part one at a time, and running the model for 100 iterations.  At the
end of this time, we compared the attribute unit vector, a, to the preferred vectors, pi, of all existing
GFA units, i.  If the Euclidean distance between a and pi was greater than 0.05 for all i, then we
created three new GFA units (one at each σ) with p = a.  Next, we trained the object units by
presenting each object part for 100 iterations and allowing it to activate all the GFA units.   After all
the parts of an object had been presented, we created two object units (one at each σ) whose means
(p) were set to the value of the GFA output vector.  All the simulations reported in the next section
were run by presenting a single object as input and allowing the model to run for 500 iterations.
Except where noted otherwise, α was 1.5 in all simulations.  The data reported are means over ten
simulation runs.  Simulations were run with multiple objects, but because the results were always
qualitatively very similar for all objects, each set of results is reported in terms of a set of runs with
one object.

2"Raw" units are units that serve as the input to (rather than the output of) the logistic functions (Eq. (3) and (4)).
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Figure 4.  Graphic depiction of the four object classes MetriCat was trained to recognize.

Multi-level Classification
The most basic test of the model's capacity for multi-level classification is its response to a

stimulus on which it was trained.  If MetriCat can recognize objects at both the instance and class-
levels, then the following results should obtain.  Given a stimulus such as car1 (the first member of
the category car), the model should activate both the instance-level (i.e., small σ) and class-level (i.e.,
large σ) object units recruited during training with that stimulus.  It should also activate the class-
level units recruited for different instances in the same class (here, car2, car3, and car4), but it should
not activate the instance-level units recruited for those objects.  It should activate neither the class-
nor instance-level units for any other objects (i.e., teapot1..nonsense-object4).  Figure 5 shows the
model's response to the stimulus car1.  Figure 5a shows the mean responses (over ten runs) of the
instance-level unit (triangles) and class-level unit (circles) recruited for car1.  Figure 5b shows the
mean responses of the instance- and class-level units for car2, the nearest other instance of the same
object class.  (Recall that car1 and car2 differ by only 0.5 raw units in the aspect ratio of one part.)
Figure 5c shows the mean responses of the instance-level and class-level units for the central-most
instance in the class lamp (lamp1).  These results indicate that the model correctly recognized car1
at both the instance- and class-levels of abstraction: Both the instance- and class-level units
recruited for car1 became active; the class-level unit, but not the instance-level unit for car2 became
active; and none of the units corresponding to lamp1 became active.

Figure 5 also shows the time course of recognition at the class- and instance-levels.  Note
that class-level units (circles) become active faster than instance-level units (triangles): Consistent
with human recognition performance (Jolicoeur, Gluck & Kosslyn, 1984; Rosch, Mervis, Gray,
Johnson, & Boyes-Braem, 1976), MetriCat recognizes objects at the class-level faster than it
recognizes them at the instance-level.  This property is a natural consequence of MetriCat's multi-
level approach to object recognition.  Recall that class-level units have wider receptive fields (larger
σ) than instance-level units.  (This is true of both object units and GFA units.)  As a result, a given
deviation (distance) between a stimulus pattern (a, in the case of GFA units and o in the case of
object units) and a unit's preferred stimulus pattern (p) has a greater impact on the response of a



Table 1.  Attribute values of the 16 objects MetriCat was trained to recognize.a

Object Part Axis
Parallelism

Cross-
Section

Aspect
Ratio

Axis
Curvature

Axis
Trucation

Above Beside

Nonsense
Object

Curved
Cylinder

4 -4 4 1 ,  1 . 5 ,
2 ,  2 . 5

0 4 4

Brick 0 4 -4 0 4 -4 4
Cone 4 -4 4 0 0 4,-4 0
Sphere 4 -4 0 0 0 4 0

Teapot Truncated
Cone

4 -4 1 ,  1 . 5 ,
2 ,  2 . 5

0 4 4,-4 4

Curved
Cylinder

0 -4 -4 4 4 0 4

Sphere 4 -4 0 0 0 4 0
Cylinder 0 -4 4 0 4 0 4

Lamp Truncated
Cone

1 ,  1 . 5 ,
2 ,  2 . 5

-4 4 0 0 4 0

Vertical
Brick

0 4 4 0 4 4,-4 0

Sphere 4 -4 0 0 0 0 4
Horizontal
Brick

0 4 -4 0 4 -4 0

Car Truncated
Pyramid

4 4 -1 .0 , -1 .5 ,
-2 .0 , -2 .5

0 4 4 0

Brick 0 4 4 0 4 4,-4 4
Horizontal
Cylinder

0 -4 -4 0 4 -4 4

Sphere 4 -4 0 0 0 -4 0
Sphere 4 -4 0 0 0 -4 4

aThe four instances of each class are distinguished by their values on one critical attribute (depicted
in bold in table cells).

narrow (instance-level) unit than on the response of a wide (class-level) unit3.  Stimuli tend to
deviate more from the trained patterns (i.e., the units' preferred patterns) earlier in processing than
later in processing.  At the level of the GFA unit inputs (a), this early deviation results from the time
it takes for an object's geons to get out of synchrony with one another (see Figure 3b and 3c),
causing the properties of different geons to be "mixed" early in processing (as elaborated below).
At the level of object unit inputs, this early deviation results both from the initially weak activation of
the GFA units and from the time it takes for all an object's geons to have the opportunity to fire.
Early in processing, the GFA outputs, Oi, will be zero for all GFA units, i, whose preferred geons
have not yet fired, causing o to differ from the object unit's p.  Here, too, class-level units, which
have wide receptive fields, will respond more strongly to these imperfect inputs than instance-level
units, with their narrow receptive fields.

Recognition of Novel Instances of Known Classes
People easily recognize novel instances of known object classes, appreciating both that the

novel instance both belongs to the familiar class and that it nonetheless differs from all previous

3Consider two Gaussian distributions, G1 with σ1, and G2, with σ2, where σ1 > σ2 (i.e., G1 is wider than G2),
and let G1 and G2 be normalized to have equal heights at their means.  For any distance, d > 0, from their means,
the height of the wide Gaussian, G1, will be greater than the height of the narrow Gaussian, G2.  That is, G1(d) >
G2(d) when d > 0 [G1(d) = G2(d) when d = 0].
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Figure 6.  Response to a novel instance of a known
class.  (a) Activation of the class (circles) and instance
(triangles) object units recruited in response to the
stimulus object as a function of time (iterations during
the simulation).   (b)  Activation of the class and
instance object units recruited in response to a different
member of the same class.

Figure 5.  Response of various object units to the
stimulus car1.  (a) Activation of the class (circles) and
instance (triangles) object units recruited in response to
car1 as a function of time (iterations).  (b) Activation of
the class and instance object units recruited in response
to car2 as a function of time.  (c) Activation of the class
and instance object units recruited in response to lamp1
as a function of time.



instances of that class.  We tested MetriCat's ability to do this by presenting it with a new member
of the class nonsense object.  We created this instance by distorting nonsense object1.  Distortions
were introduced by changing the raw values of each attribute by a random amount between -0.01
and 0.01 (20% of the distance between adjacent members of the class on the critical attribute).
Figure 6 shows the model's response to the resulting novel instance.  Circles indicate the mean
activation of the class-level unit for nonsense-object1, and triangles indicate the response of the
instance-level unit for that object (which is the closest instance to the novel one).  Note that the
model correctly recognized the novel instance as a member of the same class, but it did not mistake
it for a familiar instance (as indicated by the low activation of the instance-level unit).

Sensitivity to Noise
MetriCat is subject to intrinsic system-level noise introduced by the operations that establish

asynchronous firing of an object's geons (Figure 3).  This noise manifests itself as random
variations in the patterns of activation generated on the attribute units.  MetriCat's ability to
recognize trained objects in spite of this noise shows that the model is at least somewhat noise-
tolerant.  To further observe the model's sensitivity to noise, we tested its ability to recognize stimuli
corrupted by variable, random input noise.  We generated these stimuli by starting with a trained
object and varying each attribute value by a random amount between -0.01 and 0.01.  The noise was
re-randomized on each iteration.  The resulting variable noise can either be thought of as stimulus
noise, such as static in the image, or as additional system-level noise.  Because the noise was re-
randomized on each iteration, the mean value of each attribute (over several iterations) tends to
approach the value of that attribute in the original stimulus.  If MetriCat can tolerate this kind of
noise, then it should recognize the stimulus at both the class and instance levels (although
recognition should take longer than in the no-additional-noise case).  Figure 7 shows the model's
response to a noisy version of nonsense-object1.  As expected, the model recognized the stimulus at
both the class and instance levels, although classification took longer and did not reach as high a
level as in the basic simulations reported above.  These results are especially interesting in
comparison with the results of the simulations for Novel Instance simulations reported above. The
only procedural difference between the current simulations and the Novel Instances simulations is
that the current simulations varied the noise on every iteration, whereas the deviations in the Novel
Instances simulations did not vary.  MetriCat responded appropriately in both cases: It treated the
constant noise as a property of the object, classifying the stimulus as a novel exemplar of a known
class; and it treated the variable noise as noise, recognizing the stimulus as a familiar (albeit noisy)
instance of a familiar class.

Attention in Instance-level Classification
In MetriCat, attention modulates the lateral inhibition that causes an object's geons to fire

out of synchrony.  If two (or more) geons drift into synchrony with one another, then the properties
of one will interfere with the interpretation of the other.  As noted previously, GFA and object units
are not all equal in their capacity to tolerate this type of processing noise: Units with wide RFs
(large σ) are better-suited to tolerate deviations from their trained patterns than are narrow (small σ)
units.  At the same time, narrow units are better suited to discriminate objects at the instance-level
than are wide units.  Together, these properties predict that, with reduced attention, class-level
recognition will be possible but instance-level recognition will not (especially if the object is
depicted in a novel view; see Hummel & Stankiewicz, 1996a).  This property is illustrated in Figure
8a, which shows the response of the model to nonsense-object1 when the attention parameter, α,
was set to 0.5 (rather than 1.5, the value used in the previous simulations).  Note that MetriCat
recognized the stimulus as a member of the class nonsense-object, but did not recognize it as the
instance nonsense object1.
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Figure 7.  Response to a stimulus created by adding variable noise to a trained instance.  (a) Activation of the class
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different member of the same class.
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Figure 8.  Response to a trained stimulus under reduced attention.  Circles depict the activation of the class-level
unit recruited in response stimulus.  Triangles depict the response of the instance-level unit recruited in response
to the stimulus. (a) Model response with reduced attention (α = 0.5).  (b) Model response without attention (α =
0).

Figure 8b shows the model's performance with α set to zero—that is, when the stimulus is
not attended at all.  Here, the object is recognized neither at the instance nor class levels.  This result
seems to predict that object recognition requires attention.  However, recall that MetriCat is
intended, not as a stand-alone model, but as a component of the upper layers of Hummel and
Stankiewicz's (1996a) JIM.2.  Specifically, Layer 1 of MetriCat corresponds to the Independent
Geon Array (IGA) of JIM.2, and the classification layers of MetriCat correspond to the
classification layers of JIM.2.  Like Layer 1 of MetriCat, the IGA represents shape attributes
independently, is dependent on dynamic binding, and is responsible for recognition by structural
description.  However, JIM.2 has an additional component, the Substructure Matrix (SSM), that
does not require dynamic binding.  For familiar object views, the SSM is sufficient for rapid
recognition without attention.  The IGA and SSM represent object shape in qualitatively different
ways.  JIM.2 predicts, not that unattended objects will not be recognized, but that recognition of
unattended objects will differ qualitatively from the recognition of attended objects (see Hummel &
Stankiewicz, 1996a).  Stankiewicz et al. (1996; see also Stankiewicz & Hummel, 1997) report
experimental findings that are strikingly consistent with the specific predictions of JIM.2.  For
simplicity, we have left the SSM out of MetriCat, but in principle, the SSM could be part of



MetriCat, just as it is part of JIM.2.  Thus, we take the simulation results in Figure 8b to predict that
structural description (and recognition on the basis of a structural description) will require attention,
not that recognition at all will require visual attention.

Discussion

MetriCat is a structural description model of multi-level shape classification.  Like its
predecessors, JIM and JIM.2, MetriCat represents object shape as a collection of parts in particular
spatial relations.  Part attributes and relations are represented independently, and are dynamically
bound into structural descriptions by synchrony of firing.  However, MetriCat departs from its
predecessors in that its representation of part attributes and relations is not strictly categorical.
MetriCat's representations are categorical in the sense that they are nonlinear over categorical
boundaries in attribute dimensions, but they are metric in that they preserve metric differences
within categorical boundaries.  With the appropriate routines for matching shape representations to
object memory (here, Gaussian RFs with varying standard deviations), the resulting
metric/categorical representation supports classification at multiple levels of abstraction as a natural
consequence.  Simulation results show that, counter to popular wisdom, structural descriptions need
not be limited to recognition at the level of object classes.

The MetriCat approach to shape classification also suggests a unified account of the role
(and mechanisms) of visual attention in shape perception.  Due to the logistic representation of
metric properties, metric differences within categorical boundaries are reduced in magnitude relative
to metric differences across boundaries.  As a result, the former are more sensitive to noise than are
the latter.  MetriCat uses attention to recover such purely metric differences and classify objects as
individual instances.  In this role, attention serves to increase the signal-to-noise ratio in the
representation of a geon, allowing small metric differences to express themselves.  The same
mechanism serves to maintain the dynamic binding of shape attributes and relations into sets.  In
both cases, the mechanism is a simple parameter, α, that determines the strength with which geons
inhibit one another in the competition for the opportunity to fire: The greater the inhibition, the
cleaner the asynchrony, and the higher the signal-to-noise ratio.

Given the benefits of attention to MetriCat, it is reasonable to ask why α should even be a
variable: Why not leave it set to a maximum value all the time?  The reason is that the privilege of
firing cleanly out of synchrony is a finite resource (Hummel & Biederman, 1991).  To the extent
that one geon is firing all by itself (and thereby maximizing its binding and its signal-to-noise ratio),
then by definition, no other geons can be firing at all.  All the simulations reported here were run
with stimuli consisting of single objects.  In such situations, it is sensible to leave α at a maximum
value, devoting as much processing as possible to the one object in the visual field.  But in more
realistic situations there are many objects in the visual field, so it may be sensible as a default to
devote only a moderate amount of attention to any one object.  Such a default would permit rapid
classification at the class-level without necessarily excluding the processing of all other objects in
the visual field (cf. Stankiewicz et al., 1997).  When it becomes necessary to recognize an object as
an instance, it may be worth "turning attention up," temporarily processing that object to the
exclusion of others.  Clearly, at this point these considerations are merely speculation.  But
MetriCat suggests a specific mechanism for thinking about the implementation and consequences
of visual attention in shape perception.

Relation to Other Models of Object Recognition
MetriCat bears important similarities to current view-based models of object recognition.

First, like the models of Poggio and his colleagues (e.g., Edelman et al., 1996; Poggio & Edelman,
1990; Vetter et al., 1994), MetriCat uses units with Gaussian receptive fields as the basis for object
classification.  However, it is important to recognize that MetriCat differs markedly from any view-
based model in the representational space over which the Gaussians are defined.  In all extant
view-based models, shape classification is performed by basis functions defined in the space of the
2-D coordinates of object features: The representational assumption underlying these models is that
objects are represented and matched to memory in terms of the coordinates of their features (hence



the name "view-based").  The psychological plausibility of this assumption is questionable
(Hummel & Stankiewicz, 1996b).  By contrast, in MetriCat, the Gaussian RFs are defined in the
space of categorical attributes and relations.  As a consequence, the models have very different
properties.  In particular, it is not clear how view-based models could be adapted to account for the
role of categorical properties in shape perception (as summarized in the Introduction; see also
Biederman & Gerhardstein, 1995).  More importantly, the representations in MetriCat are
structured (i.e., attributes are represented independently of their relations) whereas current view-
based models are strictly holistic.  This difference has important implications for the models' ability
to generalize from known to novel instances (cf. Fodor & Pylyshyn, 1988; Hummel & Biederman,
1992; Hummel & Stankiewicz, 1996b).

A second similarity between MetriCat and view-based models is the shared emphasis on
metric properties in the representation of object shape.  But here, too, the differences are more
important than the similarities.  The most important difference is that in view-based models, the
representational space (feature coordinates) is perfectly linear in (indeed, identical to) the perceptual
domain from which it derives (feature coordinates as they appear in the image).  By contrast, in
MetriCat, the representational space (the logistic representation attribute values) is nonlinear in the
perceptual domain from which it derives (the numerical values of the attributes).  This difference is
important because the nonlinearity plays a critical role in the behavior of MetriCat, and the linearity
plays an equally critical role in the view-based models.  It is doubtful that the principles underlying
MetriCat could be adapted to operate with a linear representation of attributes, and it is equally
doubtful that the principles underlying the view-based approach could be adapted to work with a
nonlinear representation of coordinates (Hummel & Stankiewicz, 1996b).

Extensions
The simulations reported here suggest that MetriCat has promise as an account of our

ability to recognize objects at multiple levels of abstraction.  However, numerous additional tests are
required to evaluate MetriCat as a general model of object recognition.  Doing so will require
integrating MetriCat with a front-end (such as the early layers of JIM) that can automatically
recover geon attributes and relations from line drawings or gray-level images.  At this point, it is
nonetheless possible to speculate about some other implications of the MetriCat approach to object
recognition.  One particularly interesting implication concerns the relationship between levels of
classification and sensitivity to variations in viewpoint.  In general, categorical attributes and
relations are more robust to variations in viewpoint than otherwise equivalent metric attributes
(Biederman, 1987).  For example, a representation that describes the axis of a curved cone simply
as "curved" will remain the same in many views of the cone, whereas a representation that specifies
its numerical degree of curvature (e.g., as given by the curvature of the cone's bounding edges) will
change as the cone is rotated in depth.  MetriCat relies more heavily on precise metric properties for
instance-level recognition than for class-level recognition.  (This is true because of the way it codes
numerical attributes and the way it matches those attributes to memory for recognition.)  It therefore
predicts that instance-level recognition will tend to be more view-sensitive than class-level
recognition.  There is some indirect support for this prediction (see Biederman & Gerhardstein,
1995; Bülthoff et al., 1995; Tarr & Bülthoff, 1995).

MetriCat as Model of Visual Attention
As a model of attention, MetriCat is still in an early stage of development.  The mechanism

it uses to implement attentional selection—enhanced inhibition for asynchrony—is motivated
strictly by the problem of generating structural descriptions in a neural network for shape
recognition.  Conspicuously absent from the discussion so far is any basis for deciding when
attention should be directed to an object and where to direct it.  One particularly interesting property
of MetriCat is that an answer to the first question (How do we know when to direct attention?) may
serve as a partial answer to the second (How do we know where to direct it?).  Note that α is a
global parameter.  It does not operate on any particular location in the visual field, or even on any
particular object.  Rather, it serves only to enhance the ability of whatever is currently firing to
inhibit anything else that might attempt to fire in the near future: α is directed in time rather than



space.  Any given object (or part) exists at a particular location in the visual field, and fires at a
particular time.  Thus, knowing when to direct attention is tantamount to knowing where to direct it:
Directing attention to whatever is firing at a given time implicitly directs attention to a particular
object occupying a particular location in the visual field.

How can MetriCat figure out when to direct its attention?  Part of the answer to this
question must depend on the system's processing goals, and this part of the question is clearly
beyond the scope of our current research.  However, given that the system knows that it cares about
a particular object, there is a straightforward basis for dynamically directing attention to various
parts of that object.  This basis relates to the relationship between the activation of object units and
the utility of object parts for discriminating one object from another.  Ambiguity about an object's
identity consists of simultaneous activation in multiple, inconsistent object units.  For example, if
the units for both "teapot" and "lamp" are equally active at some instant, then at that instant,
MetriCat is undecided about whether the object is a teapot or a lamp.  Imagine that the system is
processing some (as yet unrecognized) stimulus, and that, on the basis of the geon that is currently
firing, there is no way to decide whether the object is a teapot or a lamp.  As long as the current
(uninformative) geon continues to fire, the activations of the "lamp" and "teapot" units will remain
unchanged.  Then the current geon stops firing, and some new geon starts to fire.  If this new geon
is informative, then the activations of the object units will begin to change—say, "teapot" begins to
decline and "lamp" begins to grow.  This change in activation can serve as a signal that the geon
under consideration is informative, and that attention should be directed to it (so it can inhibit its
competitors and remain active longer without interference).  Once the informative geon has done all
it can in the way of indicating whether the object is a teapot or a lamp, the object units' activations
will once again stop changing.  Attention should now be moved away from this geon and onto a
different one.  Thus, one way to dynamically direct attention may be to set α to a value proportional
to the change in the activation of object units.  We have implemented an early version of this
mechanism and the results so far have been promising.  Augmented with a learning algorithm for
keeping track of which parts are diagnostic for the recognition of which objects, this temporal
search mechanism might serve as one way to search for diagnostic features for object recognition
(e.g., as discussed by Biederman, 1987).

Of course, it is unlikely that this simple mechanism could constitute a complete solution to
the problem of allocating visual attention.  Among other things, it provides no clear way to explain
phenomena such as visual search or visual neglect, which seem to have a decidedly spatial
component.  However, it is tempting to speculate that this type of mechanism might constitute at
least one basis for attentional selection in human shape perception.

Selective Processing of Visual "Features"
One other extension of MetriCat is worth mentioning here.  MetriCat uses Gaussian

receptive fields with variable standard deviations (σ) to classify objects at multiple levels of
abstraction.  In the model's current form, σ for any given unit is a scalar.  Implicitly, this convention
sets σ to the same value for all attribute dimensions.  An extension (and generalization) of this
approach would be to make σ a vector that can take different values on different dimensions (as p is
currently).  For example, a given GFA might select for cones with a very particular aspect ratio (i.e.,
by setting σ to a small value on the dimension aspect ratio), without being as selective for particular
values on other dimensions (σ would be larger on these dimensions).  This kind of selective
narrowing of the units' receptive fields would allow MetriCat to choose diagnostic stimulus
dimensions for instance-level classification, and constitutes another way the architecture might
account for the use of diagnostic features for visual scrutiny.

Summary and Conclusions
MetriCat is in an early stage of development, but the approach is promising.  The

fundamental principles underlying the model are that: (1) Objects are visually represented as
collections of part attributes and relations, which are dynamically bound into structural descriptions
(Hummel & Biederman, 1992); (2) part attributes and relations are represented in a nonlinear



fashion that emphasizes categorical boundaries without discarding all metric information
(Stankiewicz & Hummel, 1996); and (3) attention enables parts to inhibit one another so that they
can fire cleanly out of synchrony.  Together, these principles provide a preliminary account of the
human capacity to classify objects at multiple levels of abstraction, and suggest a theory of the
mechanism of attention in shape perception.
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Appendix

Oscillatory Gates:  Each gate, i, has two components, an excitor, Ei, and an inhibitor, Ii,
which interact to cause Ei to oscillate.  Ei changes according to:

∆Ei = 0.9 1 − Ei( ) 1− 2Ii( )[ ] − 0.51 − Ei( ) − Lj
j ≠ i
∑ , (5)

where Ii is the activation of the corresponding inhibitor, and Lj is the inhibitory strength of gate j.
Ii changes according to:

∆Ii =

0.005 Ei( )  iff Ii < 0.2

0.5 Ei( )  iff Ii ≥ 0.2

 
 
 

 
 
 
 if ri

−0.01 iff Ii > 0.9

-0.5 iff Ii ≤ 0.9

 
 
 

 
 
 
,  otherwise 

 

 
  

 
 
 

. (6)

where ri is a Boolean variable that is set to true whenever Ii < 0.1 and to false whenever Ii > 0.995;
ri remains at its last set value whenever 0.1 < Ii < 0.995.  Together, (5) and (6) cause Ei to oscillate,
as illustrated in Figure 3 (Hummel & Stankiewicz, 1996a; Hummel & Holyoak, 1997).  In
combination with the inhibition between competing gates (L), the result is that separate Ei tend to
oscillate out of synchrony with one another.  Li, the inhibitory strength of gate i is:

Li = EiPi , (7)

where Pi —the priority of gate i—modulates the ability of i to inhibit other gates, j, and α modulates
the global ability of all gates to inhibit one another.   A gate's priority is:

Pi =
0 if I

i
> 0.2 and ∆I

i
=(-0.5),

Pi = Pi + 0.001 + 0.01 1− Pi( )[ ] 
 

 
  otherwise.

 
 
 

  
 (8)

By (6) and (8), Pi will go to zero immediately after i fires and then gradually grow toward 1.0.  Pi
helps the gates to "time share" by ensuring that a gate will have little ability to inhibit other gates
(and therefore little opportunity to fire) if it has fired in the recent past.  α corresponds to the
amount of attention directed to an object.  When α is large (e.g., 1.5), the various gates inhibit one
another strongly (Eq. 7) and therefore fire cleanly out of synchrony; when α is zero, the gates
cannot inhibit one another at all, and therefore never fire out of synchrony; at intermediate values of
α, the gates fire somewhat out of synchrony.

Attribute Units: Each attribute unit, i, has a Gaussian receptive field (RF) with a center, i,
in the range of logistic values (0.0..1.0) and a standard deviation, i, in the range 0.0..0.25.  The
input to attribute unit i, from all geons, j, is:

Ii = E jG i − l j , i
 
 

 
 

j
∑ , (9)

where Ej is the value of the excitatory gate on geon j, lj is the logistic value of geon j on the
corresponding attribute, and G() is the Gaussian.  The activation of an attribute unit grows as:

∆ai = 0.5 Ii − 0.05ai . (10)

GFA Units: GFA units have Gaussian RFs in the 350-dimensional (50 units X 7
attributes) space of attribute units.  The activation of GFA unit i in response to attribute vector a is:



Ai = G
pi − a

d

 

 
 
 

 

 
 
 
, i

 

 
  

 

 
  , (11)

where pi is the mean (center) of i's RF, i is its standard deviation, and d is the dimensionality of the
attribute vector (here, 350).  The output of GFA unit i at time t is:

Oi
t =

A
i
t  if A

i
t > O

i
t −1

Oi
t −1 otherwise

 
 
 

  
. (12)

Object Units: Object units have Gaussian RFs in the space of GFA unit outputs.  The
activation of object unit i is:

  

Bi = G
p

i
− o

pi

 

 

 
 

 

 

 
 
, i

 

 

 
 

 

 
  , (13)

where pi is the mean (center) of i's RF, o is the vector of GFA unit outputs, and i is the standard
deviation of i's receptive field.  The normalization by ||pi|| (the length of the object unit's receptive
field vector) serves to correct for the dimensionality of the GFA vector.  (Note that, as more objects
are learned, the number of object parts stored in memory grows, changing the dimensionality of
both the GFA output vector and an object unit's receptive field.)


