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Abstract

B Analogy is important for learning and discovery and is
considered a core component of intelligence. We present a
computational account of analogical reasoning that is compat-
ible with data we have collected from patients with cortical
degeneration of either their frontal or anterior temporal
cortices due 1o frontotemporal lobar degeneration (FTLD),
These two patient groups showed different deficits in picture

INTRODUCTION

Analogy is ubiquitous in human learning and discovery
(Gentner, Holvoak & Kokinov, 2001; Holyoak & Tha-
gard, 1995), and has long been viewed as a core com-
ponent of intelligence (Sternberg, 1977; Spearman,
1923). Research on analogies in the psychometric tradi-
tion has focused on four-term problems, for example:

BIACK:WHITE::NOISY:7( 1) QUIET(2) NOISIER.

Several processes are required to solve such problems
(1) encode the
terms of the analogy: (2) search semantic memory for a
relation that connects the first two terms, BLACK and
WHITE (opposite); (3) bind this relation to the specific

successfullv. The reasoner needs to:

concepts being related in working memory (i.e., form
the proposition “BLACK is the opposite of WHITE™);
and (4) map the resulting proposition to the third and
possible fourth terms to infer an answer (BLACK maps to
NOISY and WHITE maps to QUIET, based on the
proposition “NOISY is the opposite of QUIET™).
Analogical reasoning thus requires the ability 1o retrieve
information from semantic memory, together with the
ahility to form and manipulate mental representations of
relations between objects and events in working
memaory.,

The goal of the present article is to present evidence
concerning the breakdown of the component processes
of analogical reasoning in patients suffering from cortical
degeneration, and to simulate the findings using a
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and verbal analogies: frontal lobe FTLD patients tended to make
errors due to impairments in working memory and inhibitory
abilities, whereas temporal lobe FTLD patients tended 1o make
errors due to semantic memory loss. Using the “Learning and
Inference with Schemas and Analogies™ model, we provide a
specific account of how such deficits may arise within neural
networks supporting analogical problem solving. Il

neurocomputational model of analogical reasoning,
“Learning and Inference with Schemas and Analogies™
(LISA; Hummel & Holvoak, 1997, 2003). Previous re-
search has shed some light on the neural substrate of
analogical reasoning, and numerous computational
models of analogy have been developed. However, the
links between detailed process models of high-level
reasoning and investigations of its neural basis have
been tenuous. Our aim is to provide an example of
how a computational model of reasoning can be used to
help understand the processes that operate at the
neural level to enable complex reasoning in normal
individuals, and how frontal versus temporal lobe de-
generation may selectively impair these processes.

Neural Substrate for Analogical Reasoning

Both computational analyses and empirical evidence
suggest that analogical reasoning depends on working
memory. For example, experiments utilizing dual-task
methodology have shown that the processes of binding
and mapping used in analogical reasoning require work-
ing memory (Morrison, Holyoak, & Truong, 2001; Waltz,
Lau, Grewal, & Holvoak, 2000; Baddeley, Emslie, Ko-
lodny, & Duncan, 1998). Other studies have shown that
working memory is at least in part realized in subareas of
the prefrontal cortex, which have been implicated both
in tasks that involve simple short-term maintenance and
in more complex manipulation tasks characteristic of the
central executive (see Kane & Engle, 2003; Miller &
Cohen, 2001: D'Esposito, Postle, & Rypma, 2000, for
reviews),
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Recent studies have implicated the prefrontal cortex
specifically in reasoning tasks, Wharton et al. (2000) used
positron emission tomography to investigate brain acti-
vation associated with solving geometric analogy prob-
lems. Participants judged whether two sets of objects
were identical (literal condition) or analogous (analogy
condition). Regions active during analogy but not during
literal comparison included the left dorsomedial prefron-
tal cortex, Brodmann's area (BA) 44 and 45 (also see Luo
et al., in press). Other studies have examined the Ravens
Progressive Matrices test (RPM; Raven, 1938), a task
cognitively and psychometrically similar to analogical
reasoning (Snow, Kyllonen, & Marshalek, 1984). Waltz
et al. (1999) found that frontal lobe FTLD patients
showed a marked deficit in RPM-type problems that
required integration of two relations compared with
normal controls and FTLD patients with anterior tempo-
ral lobe damage. The frontal lobe FTLD patients per-
formed comparably to the other groups on less complex
RPM-type problems that could be solved using zero or
one relation. Waltz et al. interpreted this result, as well as
similar findings with deductive reasoning problems, as
evidence that the prefrontal cortex is important for the
integration of multiple relations, a process required to
solve reasoning problems that are relatively complex
(Robin & Holyoak, 1995; Halford, 1993; Halford, Wilson
& Phillips, 1998). Several studies using functional mag-
netic resonance imaging (MR have shown bilateral
prefrontal cortex activation during RPM problem solving
(Prabhakaran, Smith, Desmond, & Glover, 1997) with
progressively greater involvement of the right dorsolat-

eral and anterior prefrontal cortex at higher levels of

relational complexity (Kroger et al., 2002; Christoff et al.,
2001). Integrating relations requires the brain to rapidly
acquire new connections (Hummel & Holyoak, 1997,

2003), a capability that has been described as one of

the core functions of the prefrontal cortex (Miller &
Cohen, 2001; Rolls, 1996). Cell recordings with primates
(Asaad, Rainer, & Miller, 1998), as well as human studies
(Cools, Clark, Owen, & Robbins, 2002; O'Doherty, Krin-
egelbach, Rolls, Hornak, & Andrews, 2001), have demon-
strated the underlying neural correlates of such rapid
learning associated with the prefrontal cortex.
Processing analogies also is likely to utilize inhibitory
mechanisms to manage information in working memory.,
Considering our earlier verbal analogy example:

BLACK:WHITE::NOISY:#(1) QUIET(2) NOISIER,

if the semantic association between NOISY and NOISIER
is stronger than that berween NOISY and QUIET, the
correct analogical response, then QUIET may initially be
less active than the distractor item, NOISIER. Thus,
during analogical reasoning, it may be important to
inhibit information that is semantically related to the
analogy but competes against the relational martch.
Behavioral studies of analogical mapping have shown
that the ability 1o identify relational correspondences is

impaired when competing featural matches are present
(¢.g., Holyouk & Koh, 1987; Ross, 1987, 1989; Gentner &
Toupin, 1986). More generally, many researchers have
suggested that inhibition is an important mechanism for
complex cognition (see Kane & Engle, 2003; Dempster
& Brainerd, 1995; Dagenbach & Carr, 1994, for reviews),
and that changes in inhibitory control may explain
important developmental trends (Bjorklund & Harnish-
feger, 1990; Diamond, 1990; Hasher & Zacks, 1988) and
individual differences (Kane & Engle, 2003; Dempster,
1991) in complex cognition.

Many researchers have viewed inhibition as an impor-
tant function of the prefrontal cortex (see Kane & Engle,
2003; Miller & Cohen, 2001: Shimamura, 2000, for re-
views). Many complex executive tasks associated with
frontal lobe functioning (e.g., Tower of Hanoi or Lon-
don, Wisconsin Card Sorting) have important inhibitory
components (Miyake, Fricdman, Emerson, Witzki, &
Howerter, 2000; Welsh, Satterlee-Cartmell, & Stine,
1999), Shimamura (2000) has suggested that the role
of the prefrontal cortex is to dynamically filter informa-
tion, a process that requires the use of both activation
and inhibition to keep information in working memory
relevant to the current goal. Miller and Cohen (2001)
have suggested that “the ability 1o select a weaker, task-
relevant response (or source of information) in the face
of competition from an otherwise stronger, but task-
irrelevant one [is one of the most| fundamental aspects
of cognitive control and goal-directed behavior™ (p. 170),
and is a property of the prefrontal cortex.

An addition to working memory and inhibitory mech-
anisms, analogical reasoning also requires the ability 1o
access semantic information in order to retrieve and
encode the relations relevant to the analogy. While there
is considerable debate about how semantic information
is stored in the brain (Markowitsch, 2000), it seems clear
that the temporal lobes are critical for the preservation
of semantic memory (Hodges, 2000) and the relational
information necessary for analogical reasoning. The
anterior temporal cortex dappears to be particularly
important for verbally mediated conceprual knowledge
(Mummery et al., 1999; Martin, Wiggs, Ungerleider, &
Haxby, 1996).

Overview of the Present Study

In this study, we report two experiments investigating the
role of the prefrontal cortex and the anterior temporal
cortex in analogical reasoning, and a LISA simulation of
the results of the second study. These experiments were
performed with patients diagnosed with frontotemporal
lobar degeneration (FTLD). FTLD is a regional neurode-
generative etiology of dementia distinet from Alzheimer’s
disease (e.g,, Hodges & Miller, 2001; Neary et al., 1998).
Based on clinical features and necuroimaging (sce
Figure 1), FTLD patients can be divided based on their
primary locus of damage. Frontal lobe FTLD patients
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tvpically present with behavioral disturbances and have

damage to the orbital medial regions of the prefrontal
cortex, which extends into the dorsolateral prefrontal
cortex and inferior frontal gyrus as the disease progresses
(Hodges & Miller, 2001). Temporal lobe FTLD presents
with a loss of conceptual knowledge, fluent aphasia, and
late emotional changes. Damage is most apparent in the
anterior temporal cortex (Hodges & Miller, 2001). Studies
of FTLD patients can provide @ useful complement to
neuroimaging studies by making it possible to investigate
the global roles of frontal and anterior temporal lobes in
reasoning. The present study compares the performance
of frontal and temporal lobe FTLD patients to that of age-
and education-matched controls.

Analogy Experiments

Both experiments involved solving analogy problems. In
Experiment 1, participants answered analogy problems
based on a paradigm initially developed by Markman
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and Gentner (1993). On cach trial in this task, partic-
ipants first studied pairs of pictures containing multiple
relation, which

)

obhjects and ar least one dominant is

present in both pictures (see Figure 2 for an example).
l'he experimenter then indicated one object in the top
picture and asked the participant to select one object in
the bottom picture that “goes with” the indicated
object. In each case, the indicated object could plausibly
be mapped to two different objects in the bottom
picture—one that matches based on featural attributes
(a featural match), and one that matches based on its
relation(s) to other object(s), that is, based on an
analogy between the two pictures (a relationcal meatch).
Iypically, participants select either the featural or rela-
tional match. To identify the relational match for these
complex visual analogies, it will generally be necessary to
encode and manipulate multiple relations among the
(2000)

demonstrated that dual tasks designed to interfere with

depicted objects. Using this task, Waltz et al.

working memory decrease the number of relational
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Figure 1. Positron emission tomography scan from patient HS at rest

participated in both Experiments 1 and 2
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who was .I\,L;i|1\,a‘\\ with frontal lobe FTLD (later AULOPSY confirmed)
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featural
match

relational
match

Figure 2. Example problem from picture analogy task (Experiment 1.
Adapred from Tohill and Holyoak (2000)

responses given, with a corresponding increase in the
number of featural responses. In addition to the working
memaory resources needed to represent and manipulate
relations, this task likely requires inhibition of the salient
featural match in order to facilitate relational processing.
We hypothesized that frontal lobe FTLD patients will
give fewer relational responses because they have di-
minished ability to represent relations and learn analog-
ical correspondences, and because thev will have
difficulty inhibiting the salient featural match in order
to produce a less-salient relational response.

In addition, the picture analogy task also requires
retrieval of conceprual knowledge from semantic mem-
ory to encode the relations necessary 1o process the
analogy. We hvpothesized that temporal lobe FTLD
patients would favor featural over relational responses
due 1o the perceptual similarity of featural matches to
the indicated objects and the patients’ diminished se-
mantic memory, making access to the relational infor-
mation necessary to process the analogy more difficult,

In Experiment 2, we examined a verbal analogy task
that allowed us to better characterize the specific analogy
processing failures in the frontal and temporal lobe FTLD
patients. Problems of the form A:B:C:D or D" (adapted
from Sternberg & Nigro, 1980) were used. These prob-

lems varied the association berween C:D and C:D" word
pairs. A semantic facilitation index (SFL) was calculated
for cach problem to characterize the association of the
correct relational pair (C:D) relative to the distractor pair
(C:D). For example, for the problem

PLAY :GAME::GIVE:?(1) PARTY(2) TAKE

the C:D pair (GIVE:PARTY) is less associated than is the
C:D' pair (GIVE:TAKE), giving the problem a negative
SFI score. The problems were divided into three groups:
negative SFI, neutral SFI1, and positive SFI

We predicted a different pattern of results for frontal
and temporal patients, Because these simple four-term
analogy problems are each based on a single relation
between the A and B terms (unlike the more complex
picture analogies used in Experiment 1), it should be
possible for frontal patients to perform the basic ana-
logical mapping despite their diminished working mem-
ory. In the positive and necutral SFI conditions, the
analogical answer (D) does not face competition from
a4 competitor (D) that is more strongly associated with
the C
simply be activated and produced as a response. How-
ever, in the negative SF1 condition, the D' foil is in fact
more strongly associated with C than is the analogical
response D, It follows that in order to generate the
analogical answer, it will be necessary not just to activate

term. Accordingly, the analogical answer can

it, but to rapidly learn the analogical correspondences so
that activation of the analogical answer D can be main-
tained in the face of automatic activation of the foil D', Tt
will then be necessary to inhibit the D' response so that
the analogical response D can be made. Because of their
postulated deficits in both rapid learning and inhibitory
control, we predicted that frontal patients would be
sclectively impaired in the negative SFL condition rela-
tive to the positive and neutral SFI conditions. In
contrast, we predicted that temporal patients would
show a more uniform decline in verbal analogy perfor-
mance across all three conditions due to their loss of the
conceptual information necessary to encode the rela-
tions in the analogy problem.

LISA: A Newrocomputational Model of Analogical
Reasoning

In an effort to substantiate the importance of semantic
memory, working memory, and inhibition in analogical
reasoning, we modeled the deficits in patient perfor-
mance in LISA (Hummel & Holvoak, 1997, 2003), a
symbolic—connectionist maodel of analogical reasoning.
Although numerous computational models of analogy
have been developed (see French, 2002, for a review),
no other such model has been used to simulate neuro-
psvchological data.

LISA represents propositions using a hierarchy of
distributed and localist units (see Methods, Figure 3).
LISA includes both a long-term memory for propositions
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and concept meanings and a limited-capacity working
memory. LISA's working memory representation, which
uses neural svnchrony to encode role-filler bindings,
provides
working memory because it is only possible to have a
finite number of bindings simultancously active and
mutually ozt of synchrony (sce Appendix A in Hummel
& Holyvoak, 2003, for details). Units representing one
analog (the driver) are activated in working memory,
and reasoning proceeds by passing activation from these
units through distributed semantic units 1o units repre-
senting the recipient analog in long-term memory. As
units in the recipient analog are fired they enter working
memory, remaining in active memory when they are not
currently being fired. LISA also includes a set ol mep-
ping connections between units of the same tvpe (e.g.,
object, predicate) in separate analogs. These connec-
tions grow whenever the corresponding units are active
simultancously, and thereby permit LISA to learn the
correspondences between structures in separate ana-
logs. They also permit correspondences learned early in
mapping to influence the correspondences learned lat-
er. Hummel and Holyoak (1997, 2003) hypothesized
that the rapid learning of mapping connections is an
important function of working memory as implemented
in the prefrontal cortex, consistent with recent work by
Asaad et al. (1998). The behavioral experiments and
computational simulations reported here serve as addi-
tional tests of this hvpothesis,

In addition to the mapping connections, several other
aspects of LISA's operation also map onto functions
associated with the prefrontal cortex and anterior tem-
poral cortex. Inhibition (considered an important func-
tion of the prefrontal cortex) plays a central role in
several aspects of LISA. These include: (a) LISA's ability
to select items for placement into working memory; (b)
its working memory capacity for role-filler bindings; (¢)
its ability to control the spreading of activation in the

a4 natural account of the capacity limits of

recipient (i.e., its ability to disambiguate which elements
of the recipient correspond to the active units in the
driver); and (d) its ability to use competition among
mapping connections to enforce structural constraints
on the discovery of analogical mappings, particularly the
constraint that mappings tend to be one-to-one (see
Holvoak & Thagard, 1989). Damage to the prefrontal
cortex is expected to adversely affect all these aspects of
LISA's ability to solve analogies. Damage to the anterior
temporal cortex—and the resulting loss of semantic
knowledge—corresponds in LISA to a loss of connec-
tions between the semantic propertes of relational roles
(i.e., semantic units) and units representing those roles
in long-term memory,

RESULTS
Experiment 1: Picture Analogy Task

The results from the picture analogy task are summa-
rized in Figure 3.

Frontal lobe FTLD patients chose
fewer relational responses and more featural responses
than control participants, ((18) 5.2, p < 001 and
((18) = 4.0, p < 001, respectively. Frontal lobe FTLD
patients showed a wrend toward choosing more unre-
lated choices than control participants, but this trend
was not reliable, 1(16) = 1.6, p = .14. Likewise, tempo-
ral lobe FTLD patients also chose fewer relational
responses and more featural responses than did con-
trol participants, ((18) = 3.8, p = 001 and #(18) = 3.0,
p = 007, respectively, Temporal lobe FTLD patients
chose no more unrelated objects than did control
participants, #(18) =

When frontal lobe FTLD patients did report relational

0.527, ns.

answers, they usually were solving problems in which
the relational match was also spatially aligned (e.g.,
objects on the left in both top and bottom pictures),
or in which the target object and the relational maich

Figure 3. Results of picture
analogy task (Experiment 1) 100+
Both frontal and temporal lobe 90
FTLD patients show a reliable -
decrease in the number of 5 |
8 80
relational responses, with a =}
corresponding increase in 8« 70
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=
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Figure 4. Results of verbal
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analogy task (Experiment 2)
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also shared some perceptual similarity. This finding
suggests that frontal lobe FTLD patients were maore
likely to choose the relational answer when it was
supported by perceptual cues, minimizing the need 1o
inhibit competing information. Temporal lobe FTLD
patients distributed their relational responses more
evenly across the set of 10 picture pairs,

Experiment 2: Verbal Analogy Task

The results from the verbal analogy task are summarized
in Figure 4A. Frontal lobe FTLD patients made more
errors than did control participants, F(1.19) = 11.5,
MSE = 0.038, p = 003, Likewise, temporal lobe FTLD
patients also made more errors than did control partic-

ipants, £(1,19) = 188, MSE = 0.038, p < .001. Testing
our specific hypothesis, we found that frontal lobe FTLD
patients showed a specific deficit in negative SFI prob-
lems relative to neutral and positive SFI problems rela-
tive to control participants, F(1,19) = 5.0, MSE = 0.140,
f = .04. In contrast, temporal lobe FTLD patients did
not show this pattern, F(1,19) < 1, MSE = 0.140, 22s.

Simulation of Verbal Analogy Task in LISA

LISA simulations were performed for the verbal analogy
task, which allowed better control of stimulus variables
than did the picture analogy rask. Our intent was to
model three key characteristics of the verbal analogy
data presented in Figure 4A: (1) control participants

Mowrrison et al 265




show no effect of SFI problem type; (2) temporal lobe
FTLD patients show depressed performance that is
relatively unaffected by SFI problem type: and (3)
frontal lobe FTLD patients show a specific deficit on
negative SFI problems relative to neutral and positive
SFI problems. A full description of the assumptions
made in modeling the verbal analogy task is presented
in the Methods section of this article. In brief, we
created representations for the various SFI problem
tvpes by assuming word pairs that are highly associated
in long-term memory have more relational instances
(i.e., propositions explicitly relating them) in long-term
memory relative to less associared word pairs. Frontal
lobe FTLD patient performance was simulated in LISA
by decreasing the learning rate for mapping connec-
tions and recipient inhibition level. In contrast, tempo-
ral lobe FTLD patient performance was simulated by

increasing the semantic death rate (the probability, p, of

losing a connection between a semantic unit represent-
ing a relational role and a predicate unit for thar role).
These alterations were based on the current concep-

tions of the deficits caused by these two subtypes of

FTLD: Frontal lobe damage results in the loss of ability
to rapidly form associations and inhibit irrelevant stim-
uli, whereas temporal lobe damage leads to semantic
memory loss.

Because of the stochastic nature of the simulations,
we ran 40 trials per problem type with model parameter
scttings corresponding to the various patient groups.
LISA’s mean percent correct for each of the conditions is
shown in Figure 4B; the model’s performance can be
compared with the patient data shown in Figure 4A. The
simulation results, like the patient data, show all three
patterns described above. Additional simulations re-
vealed that to simulate the performance of frontal lobe
FTLD patients, it is in fact necessary 1o impair boith LISA's
rapid learning and its recipient inhibition; neither factor
alone is sufficient.

DISCUSSION

Our goal in this study was to investigate the neural basis
of analogical reasoning. In two experiments, we found
that frontal and temporal lobe FTLD patients both
exhibit deficits in analogical reasoning relative 1o age-
matched controls, but that the underlying basis for their
deficits appears to differ. When given pairs of complex
pictures (Experiment 1), both patient groups were
impaired in selecting a relation-based match for an
abject in the presence of a salient feature-based match.
Although their diminished level of relational responses
was comparable, there was some evidence that the
underlying deficit differed for the two groups, Frontal
lobe FTLD patients were relatively likely to generate the
relational response for those picture pairs in which
perceptrual cues, such as spatial position, were correlat-
ced with the relational response. suggesting that their
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overall relational deficit was due at least in part to
impairment in the ability to inhibit the competing
feature-based match. In contrast, temporal lobe FTLD
patients were more uniformly impaired in relational
responding across all picture pairs, suggesting that their
underlying deficit involved loss of the conceptual knowl-
edge required to encode the depicted relations.

The dissociation between the deficits of the two patient
groups was revealed more clearly in Experiment 2, in
which participants were asked to solve two-alternative
verbal four-term analogy problems in which the asso-
ciation strength of the analogical response was greater
than (positive SFI), equal to (neutral SFI), or less
than (negative SFI) that of the foil. These problems
can be solved on the basis of a single relation, and
hence, even frontal lobe FTLD patients are capable of
performing the necessary mapping and making the
analogical response for positive and neutral SFI prob-
lems. However, frontal lobe FTLD patients were selec-
tively impaired in solving the negative SFI problems,
which require rapid learning of the analogical response
so that its activation can be maintained, coupled with
inhibition of the more highly associated foil. Temporal
lobe FTLD patients, in contrast, were more uniformly
impaired across all problem types, as would be ex-
pected if the source of their reasoning deficit involved
neither analogical mapping nor inhibition, but rather
loss of the underlving conceptual knowledge in long-
term memory required to encode the relation between
the A and B terms of the analogy. This finding is
consistent with many studies of patients with temporal
lobe FTLD that have found poor semantic memory
performance in patients with damage to the anterior
temporal cortex (Mummery et al., 1999: Hodges, Pat-
terson, Oxbury, & Funnell, 1996).

The postulated deficits in the frontal and temporal
lobe FTLD patient groups on the verbal analogy task
were modeled within an integrated neurocomputation-
al model of analogical reasoning, LISA (Hummel &
Holyoak, 1997, 2003). We were able to simulate the
observed pattern of frontal lobe deficits by impairing
the rate of rapid learning of analogical connections,
coupled with reduction of inhibitory control. Both
rapid learning (Cools et al., 2002; O'Doherty et al.,
2001; Rolls, 2000; Asaad et al., 1998) and inhibition
(Miller & Cohen, 2001; Shimamura, 2000) appear to be
key functions of the prefrontal cortex. When both
these functions (not just either one alone) were
impaired in LISA, the model yielded the patern of
selective impairment on negative SFI problems shown
by frontal lobe FTLD patients. When the extent of
semantic death (loss of connections between semantic
units representing a relational role and a predicate unit
for that role) was increased in LISA, thereby modeling
a loss of conceprual knowledge in the anterior tem-
poral cortex, the simulation vielded the pattern of
impairment found for temporal lobe FTLD patients: a
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relatively uniform decrease in accuracy across all verbal
analogy problems, regardless of SFI condition,

In summary, the LISA simulations demonstrate that
“computational lesioning™ of rapid learning mechanisms
and the inhibitory control of working memory vield
deficits in analogical reasoning qualitatively similar to
those observed with frontal lobe FTLD patients, whereas
random destruction of connections within semantic
memory yield deficits qualitatively similar to those ob-
served with temporal lobe FTLD patients. The present

study constitutes an initial step toward the goal of

understanding the mechanisms of high-level human
reasoning at a level that makes contact with what is
known about cortical functioning.

METHODS

Experiment 1: Picture Analogy Task

Participenits

Characteristics of participants in Experiment 1 are
summarized in Table 1. Patients included in the study
were diagnosed with FTLD according to the diagnostic
criteria described in Neary et al. (1998). In addition,
patients included in the study had abnormal scan data
(SPECT, PET, or structural MRI; see Figure 1) and
Mini-Mental Status  Examination (MMSE) scores over
15. There were no reliable differences between patient
groups and matched controls with respect to age and
educational attainment. Patients and controls were
paid US$10 in exchange for participation in a one-
hour testing session.

Viettericls

Picture analogy problems consisted of 10 pairs of pic-
tures, eight provided by Markman and Gentner (1993)
and two by Tohill and Holvoak (2000). Each of the
pictures showed a visual scene involving three or more
objects with at least one relation linking two of the
objects (see Figure 2). In each problem, the same
relation was present in both pictures; however, at least
one of the objects linked by the relation was different in
the two pictures (e.g., restrain |man, dog|; restrain

Table 1. Characteristics of Paticnt and Control Participants for
Experiment 1: Picture Analogy

Number of  Mean Mean Mean
Grou Perticipeints Ave Feucation  MVSE
Frontal lobe 7 04.7 159 25.7
FTLD patients
Temporal lobe (8 08.3 17.8 243
FTLD patients
Control s (66,2 15.8 na

participants

[tree. dogl). One object (e.g., man) in the top picture
could be matched to an object in the bottom picture
based either on a shared relational role (e.g., tree) or
featural overlap (e.g., boy). Each problem appeared on a
single sheet of paper.

Procedure

Participants were tested with a modification of Markman
and Gentner's (1993)
pants studied cach problem for 10 sec. After this study
period, the experimenter pointed to the critical object in
the top picture and asked the participant to point to one

“one-map’ procedure. Partici-

object in the bottom picture that “goes with™ the
indicared object in the top picture. Participants indicated
their choice by pointing or saving the name of the
object. Problems were presented in a fixed order ran-
domly determined before the study. There were no
additional instructions given to the participant and there
were no example problems.

Experiment 2: Verbal Analogy Task

Participants

Characteristics of participants in Experiment 2 are sum-
marized in Table 2. Patients were selected using the
same criteria as in Experiment 1 and also received US$10
for participating in a testing session, Word association
ratings were collected from 150 undergraduate students
at the University of California, Los Angeles (UCLA) who
received extra course credit in exchange for participat-
ing. Verbal analogy problems were evaluated for difficul-
ty by 54 UCLA undergraduate students who also
received course credit in exchange for participating,.

Meaiterials

The verbal analogies were selected from a set of 200
two-choice verbal analogy problems provided by Mi-
chael Gardner (Sternberg & Nigro, 1980). The problems
were of the type A:B:C:D or D' where participants must
select between choices D and D' based on the relation-
ship between A and B. The correct relation pair is
designated C:D and the distractor pair is C:D". Each pair
of words (A:B. C:D, and C:D') were related by one of five
common relations (same, opposite, function, linear
ordering, category). Word association ratings for the
C-D and C=D' pairs were collected from 150 UCLA
undergraduates. Participants were asked to rate “how
associated™ the individual word pairs were using a
S-point scale. These values were normalized and an
SFI was calculated for each problem. The SFI was
defined as the difference between the z-score of the
word association for the correct pair (C:D) minus
the incorrect pair (C:D'). Thus, when the SFI is positive
for a problem, semantic associations favor the correct
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Table 2. Characteristics of Patient and Control Participants for
Experiment 2: Verbal Analogy

Number of  Mean Mecan Mean
Group Participants — Age  Fducation  MMSE
Frontal lobe 7 64.7 15.9 25.7
FTLD patients
Temporal lobe 5 (7.6 17.5 25
FTLD patients
Control 10 (4.2 16.4 N

participants

analogical response. When the SFI is negative, semantic
associations between C and D favor the incorrect ana-
logical response. Based on their SFI values, problems
were divided into positive (SFI > .3), negative (SFI <

3y and neutral (=3 < SFI < .3) SFI groups. These
problems were normed for difficulty on 54 UCLA stu-
dents, and 24 problems were chosen based on SFI,
accuracy and correct RT.

Procedure

Problems were presented one at a time using a note-
book computer. An instruction screen containing one
example was read to each participant and they had the
opportunity to ask questions. After completion of a
practice session of five problems, the experimenter
began the task. After the participant indicated their
choice either verbally or by pointing, the experimenter
recorded their choice on the computer. Problems were
presented in random order to each participant,

Simulation of Verbal Analogy Resuldis in LISA

LISA represents propositions using a hierarchy of units
(see Figure 5 for a schematic representation of LISA's
architecture). At the bottom of the hierarchy, “seman-
tic™ units (small circles in Figure 5) represent objects
and relational roles in a distributed fashion. Consider
the proposition becomes (prince, king). Each role of the
hecomes relation would be represented by units coding
for its semantic content (e.g., prior-state for the first
role, end-state for the second, and transition for both).

Recipient

r(C.D)

Unit Types

proposition

subpropasilion

A\

Example:
ABC:Dor

PRINCE: KING: PRINCESS: QUEEN or RULL r(AB)
(A H)becomes(prinee, King)
r{C.D)becomesiprincess, queen) Driver

S(C.D" ) function (princess, rule)

N7

OO0 ODDTOOO00000000

relation/
uhjy( 18

setmantic

relation/

objects

subproposition

'”h‘)'”r'\l”fi”

Figure 5. Modeling the verbal analogy task (the A:B:C:D or D analogy problem) in LISA. The driver is represented by a set of hierarchical units that
encode objects A and B that are related by relation r. The recipient is represented by sets of units that encode the correct relational response (1)) as

refated to C by relation ». The competing response is also represented in the recipient, but by units associating C and D' by the relation's. The ratio

of proposition units in the driver for the #(C:Dy and s(C:D") is varied according to the SFI type of the problem.
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Similarly, the arguments “prince”™ and “king™ would be
represented by units specifving their meaning (e.g.,
person, male, rovalty). Predicate and object units
(triangles and large circles, respectively, in Figure 3)
represent relational roles and their fillers in a localist
fashion, and have bidirectional excitatory connections
to the corresponding semantic units. Subproposition
(SP) units (rectangles in Figure 5) bind roles to their
arguments, and have bidirectional connections to the
corresponding predicate and object units. In the case of
becaomes (prince, king), one SP would bind “prince™ to
the first role of becomes, and another would bind
“king” to the second. At the top of the hierarchy,
proposition (P) units bind role-filler bindings into com-
plete propositions via excitatory connections to the
corresponding SPs. A complete analog (i.e., situation,
story or event) is represented by the collection of
semantic, predicate, object, SP and P units that collec-
tively code the propositions in that analog. Separate
analogs do not share object, predicate, SP or P units.,
However, all analogs are connected to the same set of
semantic units. The semantic units thus permit the
units in one analog to communicate with the units in
others.

For the purposes of memory retrieval and analogical
mapping (Hummel & Holyoak, 1997) as well as analog-
ical inference and schema induction (Hummel & Holy-
oak, 2003), analogs are divided into two murtually
exclusive sets: o driver and one or more recipients.
The sequence of events is controlled by the driver: One
(or at most three) at a time, propositions in the driver
become active (i.e., enter working memory). When a
proposition enters working memory, the binding of its
roles 1o their arguments is represented by synchrony of
firing: All the units under a given SP fire in svnchrony
with one another, and separate SPs fire out of synchrony
with one another. The result on the semantic units is a
set of mutually desynchronized patterns of activation:
One pattern for each active SP (i.e., role binding) in the
driver. In the case of becomes (prince, king), the seman-
tic features of “prince” would fire in synchrony with the
features of the first role of hecomes, while “king” fires in
synchrony with the second. To represent the proposi-
tion hecomes (king, prince), LISA would activate exactly
the same semantic units, but their synchrony relations
would be reversed, with “king” firing in synchrony with
the first role of hecomes, and “prince” firing with the
second. The resulting patterns of activation on the
semantic units drive the activation of propositions in
the various recipient analogs, and serve as the basis for
analogical mapping, inference, schema induction, and
the other functions LISA performs (Hummel & Holyoak,
1997, 2003). The final component of the LISA architec-
ture is a set of mapping connections between units of
the same type (e.g., object, predicate, etc.) in separate
analogs. These connections grow whenever the
corresponding units are active simultancously, and

thereby permit LISA 1o learn the correspondences be-
[ween structures in separate analogs.

To model the verbal analogies solved by the various
patient groups in this study, we made several assump-
tions about the way people represent and solve these
prablems. In the positive SFI condition, there are more
instances of relations matching A:B and C:D (the correct
response) in long-term memory than there are instances
of relations matching C:D' (the incorrect choice); in the
negative SFI condition, there are more instances match-
ing the incorrect choice; and in the neutral SFI condi-
tion, the two choices are matched. In the simulations,
the numbers of relations assumed was 4:2, 2:4 and 3:3,
respectively. The task involves mapping the A:B pair into
long-term memory to find a match. That is, Relation 1
(A, B) serves as the driver, and the various Relation 1 (C,
D)y and Relation 2 (C, D'y propositions are in the
recipient. Finding a match, that is, deciding whether
the correct answer is D or D', is based on monitoring the
units representing D and D' to determine which be-
Comes more active.

Damage to the anterior temporal cortex corresponds
in LISA to a loss of connections between the semantic
properties of relational roles (ie., semantic units) and
units representing those roles in long-term memory. It
was assumed that all wypes of participants (including
normal controls) suffer from some amount of “noise”
in their semantic representation of the situation at
hand. This was modeled as a random input (in the
range 0...) added to the inputs to the semantic units
at each instant in time. For reference, a semantic unit
receives an input of approximately 1.0 from any driver
or recipient unit to which it is connected, so the value
of » represents a proportion of this (nonrandom) input.
For these simulations the value of » was 33 for all
conditions.

We also assumed that some proportion, p, of the
connections from semantic units 1o units representing
tokens of relational roles (predicate units) and to object
fillers (object units) are randomly lost (“'semantic
death™). To simulate normal controls and frontal lobe
FTLD patients, we set p to 0.1 (i.e., LISA forgets 10% of
the semantic connections in these conditions); to sim-
ulate temporal lobe FTLD patients, p was set to 0.75.
That is, we assume temporal lobe FTLD patients have
lost much of their semantic knowledge of what the
various relations mean.

We assume one cost of frontal degeneration is a
general loss of the ability to inhibit irrelevant informa-
tion. Accordingly, to simulate the frontal lobe FTLD
patients’ performance, we reduced ability of units in
the recipient analogs to inhibit one another to 0.4; to
simulate controls and temporal lobe FTLD patients, this
parameter was left at its default value of 1.0, We assume
that another funcrion of the frontal lobes is to maintain a
representation of the correspondences discovered dur-
ing analog'ical mapping (i.e., the rapid learning of new
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associations). Accordingly, to simulate frontal lobe FTLD
patients, we reduced the mapping connection learning
rate from 0.9 (its default value in LISA) to 0.4. To
simulate controls and temporal lobe FTLD patients, this
parameter was left at its default value of 0.9.
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