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Abstract 
 

Similarity is a central construct in perceptual and cognitive 
science, with implications for everything from basic color 
and pattern perception, to object and phoneme recognition, 
memory retrieval, analogical reasoning and problem 
solving.  Previous studies have examined people’s overt 
similarity judgments to understand the roles of similarity in 
cognition, and several model have been proposed to account 
for the data.  This paper presents our simulations of these 
data with a model originally designed to simulate analogical 
reasoning (Hummel & Holyoak’s 1997, 2003a, LISA 
model), not similarity judgments.  We show that the same 
mechanisms that LISA uses to simulate analogy also 
provide a natural account of disparate data on similarity 
judgments.  These successes speak to the utility of LISA’s 
symbolic-connectionist knowledge representations as an 
account of human mental representations. 
 

Similarity in Perception and Cognition 
 

The concept of “similarity” plays a central role in perception 
and cognition, and numerous models have been proposed to 
account for it. Most of these efforts have met with mixed 
success. 
 Shepard’s (1962) Multi-Dimensional Scaling (MDS) 
account of similarity and Tversky’s (1977) feature-based 
contrast model capture many “featural” aspects of 
similarity, but fail to capture structural aspects (e.g., 
Gentner & Markman, 1997; Goldstone, 1994; Goldstone, 
Medin & Gentner, 1991).  Gentner and colleagues have 
modeled “structural” aspects of similarity with the SME 
model of analogy (e.g., Gentner, Ratterman, & Forbus, 
1993; Markman & Gentner, 1993), but their approach does 
not capture basic “featural” aspects of similarity (e.g., 
Goldstone’s “Matches Out of Place”, or MOPs; Larkey and 
Markman, 2005). 
 These complementary successes and failures suggest that 
what is needed is an account of mental representation that 
captures both the semantic/featural content of percepts and 
concepts (like MDS or the contrast model, but unlike SME) 
and also captures their relational/propositional organization 
(like SME, but unlike MDS and the contrast model).   

 Hummel and Holyoak (1997, 2003) have made similar 
observations about the complementary featural/structural 
requirements on mental representation, not in the context of 
similarity judgment, but in the context of relational 
reasoning, especially reasoning based on analogies, schemas 
and rules.  Their LISA model incorporates both featural and 
structural knowledge and has accounted for numerous 
results in analogical reasoning, including analogical 
reminding and mapping (Hummel & Holyoak, 1997), 
analogical inference and schema induction (Hummel & 
Holyoak, 2003a), the development of these abilities 
(Morrison, Doumas, & Richland, 2006) and their decline in 
normal aging as a result of varieties of fronto-temporal 
dementia (Morrison, et al., 2004; Viskontas et al., 2004), 
among other phenomena (see Hummel & Holyoak, 2003b, 
for a review).  We hypothesize that overt similarity 
judgments rely on the same representations that coordinate 
such high-level cognitive functioning.  If this is the case, 
then LISA may provide a powerful platform for simulating 
such judgments.  Moreover, its ability or inability to do so 
stands as an important test of its account of knowledge 
representation. 
 

Knowledge Representation in LISA  
 

LISA’s knowledge representations (“LISAese”) are 
connectionist representations made explicitly relational (i.e., 
symbolic) by virtue of their ability to dynamically bind 
relational roles to their fillers.  LISA represents propositions 
such as “the machine repairs the car”, or repair (machine, 
car), using a hierarchy of distributed and progressively more 
localist codes (Figure 1).  At the bottom of the hierarchy, 
“semantic units” represent objects (e.g., machine and car) 
and relational roles (e.g., the repairer and repairee roles of 
repair (x, y)) in a distributed fashion.  For example, “car” 
might be represented in terms of features such as “artifact”, 
“mechanical”, “transport”, etc., and “machine” as “artifact”, 
“mechanical”, “labor”, etc.  These distributed semantic 
representations serve to make explicit what objects (and 
roles) have in common and how they differ. 
 At the next level of the hierarchy, object and role units 
(large circles and triangles, in Figure 1) represent objects 
and relational roles in a localist fashion, sharing bi-
directional excitatory connections with the corresponding 



semantic units.  For storage in LTM (and predication in 
working memory [WM]; see Hummel and Holyoak, 2003a), 
objects are bound to relational roles (e.g., “machine” to 
repairer and “car” to repairee) by means of localist sub-
proposition units (SPs; rectangles in Figure 1).  Collections 
of role-filler bindings are bound into complete propositions 
by means of localist proposition (P) units (ovals in Figure 
1).  

 
Figure 1. LISAese representation of repair  (machine, car).  
The labels r1, r2, m and c refer to repairer, repairee, 
machine and car, respectively. 
 
 When a proposition enters WM, roles fire in synchrony 
with the fillers to which they are bound and out of 
synchrony with other role-filler bindings, resulting in a 
systematic pattern of firing on the semantic, object, role and 
SP units.  For example, to represent repair (machine, car), 
the units representing car would fire in synchrony with 
those representing repairee, those representing machine 
would fire in synchrony with repairer, and the car+repairee 
units would fire out of synchrony with the 
machine+repairer units.  The resulting representations are 
simultaneously symbolic, by virtue of dynamically binding 
roles to their fillers, and distributed, by virtue of the 
semantic units.  As such, they suggest a potential basis for 
simultaneously capturing both the featural/semantic aspects 
and the structural aspects of similarity. 

 
Computing Similarity Judgments with LISA 

 

Although LISA was not designed to simulate explicit 
similarity judgments, it is nonetheless possible to extract 
similarity judgments from the model by exploiting two 
functions the model currently uses for analogical inference 
(Hummel & Holyoak, 2003a) and relational match-to-
sample (Kroger, Holyoak & Hummel, 2004). 
 People use the quality of the mapping between a target 
analog and a potential source to decide whether to make 
inferences from the source to the target (Lassaline, 1996). 
LISA implements this constraint by computing how well a 
target analog, T, maps to a potential source, S (Hummel & 
Holyoak, 2003, Eq. A15): 
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where q(T, S) is the quality of the mapping of T onto S, it is 
the “importance” (i.e., pragmatic centrality; Holyoak & 
Thagard, 1989) of unit t in T, m(x, y) ∈ 0…1 is an index of 
mapping strength from unit x to unit y, smax is the unit in S 
with the largest such mapping to t and smax2 is the unit with 
the second largest. Eq. 1 expresses the (importance-
weighted) proportion of the structures in T that map 
uniquely to structures in S.  In all the simulations reported 
here, i = 1 for all s and all t, allowing us to replace the sum 
in the denominator with n(T), the number of token units in 
T.  
 Eq. 1 can be generalized to provide a measure of 
mapping-based similarity by adding a measure of the 
semantic similarity of t to smax.  We chose cos(t, smax), the 
cosine of the angle between the vector of semantic weights 
leading into unit t and the vector leading into smax: 
 

! (T ,S) =

[m(t, s
max
) " m(t, s

max 2
)

t ,s#T ,S

$ ]cos(t, s
max
)

n(T )
.         (2) 

 
Note that σ(S, T) will not necessarily equal σ(T, S), 
especially if n(T) ≠ n(S). 
 Finally, we generalize Eq. 2 by adding a Weber constant 
to the denominator: 
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(See Hummel & Holyoak, 1997, for a discussion of the 
utility of the Weber law.) 
 Eq. 3 represents LISA’s mapping-based estimate of the 
similarity of T to S.  It is at a maximum when each t maps 
uniquely to one s (i.e., m(t, smax) = 1 and m(t, smax2) = 0) and 
is maximally similar to that s (i.e., cos(t, smax) = 1); in this 
case, σMIP(T, S) = n(T)/(1+n(T)).  In the parlance of 
Goldstone (1994), it is the contribution to similarity of 
“matches in place”, or MIPs.  However, Goldstone and 
others (e.g., Larkey & Markman, 2005) have shown that 
“matches out of place” (i.e., shared features on non-
corresponding elements; MOPs) also contribute to 
judgments of similarity.  To obtain a measure of the total 
similarity, σtotal(T, S), we therefore add a measure of the 
similarity, σMOP(T, S), of all objects and roles across T and 
S, whether they map or not: 
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! total (T ,S) = !MIP (T ,S) +!MOP (T ,S),                   (5) 
 

where no(T), nr(T) and no(S), no(S) are the numbers of object 
and role units in T and S.  Similarity in LISA (Eq. 5) is a 
simple sum of MIP and MOP similarities. 
 The components of Eq. 5—the assessment of mapping 
quality (Eq. 1), the use of the Weber fraction (Eq. 2) and the 
cosine measure of similarity (Eqs. 3 and 4)—were all part of 
LISA prior to their use in these equations.  That is, Eq. 5 
represents our best interpretation of LISA’s estimate of 
similarity as embodied in the 2003 version of the model.  
With this formulation, we can now run “standard” LISA on 
several tasks that have been reported in the literature to test 
whether LISAese produces the same kinds of similarity 
judgments as human subjects. 
 

Simulations 
 

To assess LISA’s adequacy as a model of similarity, we 
simulated both similarity effects previously captured by 
feature-based models and effects captured by structural 
models. 
 
Violations of the Metric Axioms (Tversky, 1977) 
 

A classic view of similarity states that concepts are 
represented as points in a “mental space” and that the 
similarity of two concepts is the inverse of distance between 
those points (e.g., Shepard, 1962a, 1962b).  If concepts are 
represented as points in mental space, then the similarity of 
any pair of concepts must obey the metric axioms.  
However, Tversky (1977) presented evidence that human 
similarity judgments violate the metric axioms.  As a first 
test of LISA’s account of similarity, we used the model to 
simulate these violations of the metric axioms. 
Symmetry: Symmetry states that the distance, d(x, y), from 
point x to point y is equal to d(y, x), the distance from y to x 
(and thus the similarity s(x, y) must equal s(y, x)).  
Following Tversky (1977), we modeled a violation of 
symmetry by computing the similarity of China to North 
Korea and the similarity of North Korea to China.  
Motivated by Tversky’s observation that his subjects likely 
knew more about China than North Korea, LISA’s 
representation of China contained more propositions than its 
representation of North Korea (9 vs. 3; see Table 1).  To 
simulate the process of making a similarity judgment, we 
allowed LISA to map China onto Korea (or vice-versa) and 
then applied Eq. 5, above. 
 Like Tversky’s subjects, LISA rated the similarity of 
North Korea to China (σtotal = 0.877) greater than that of 
China to North Korea (σtotal = 0.385).  This difference 
comes entirely from the σMIP term (Eq. 3; the σMOP term was 
the identical for the two ratings).  When a sparse analog 
(North Korea) is mapped to a more complex analog (China), 
all the structures in the sparser analog can map uniquely to 
structures in the complex one, resulting in a proportion close 

to one.  For the reverse judgment, many aspects of China 
did not map to anything Korea, yielding a smaller 
proportion of matches.  Thus, LISA explains the violation of 
symmetry in terms of an asymmetry of mapping between 
analogs with different numbers of propositions. 
Minimality:  Minimality states that the distance between 
any point and itself is always zero, and thus equal for all 
points.  Minimality implies that all concepts are equally 
self-similar.  However, Tversky argued that people may 
view complex objects (e.g., a cubist painting) as more self-
similar than simpler objects (e.g., a square). 
 We simulated this effect by computing the similarity of 
China (relatively complex) to itself and North Korea 
(relatively simple) to itself.  Interestingly, the σMIP and σMOP 
measures of similarity yielded opposite patterns.   For σMIP, 
China was more self-similar than Korea (0.851 vs. 0.662, 
respectively), whereas for MOPs, Korea was more self-
similar than China  (0.677 vs. 0.122).  Goldstone and Medin 
(1994) showed that the effect of MOPs decreases during the 
time-course of comparison.  LISA thus predicts that the 
relative self-similarity of simple and complex objects may 
reverse over time, with simple objects being more self-
similar early in processing and complex objects being more 
self-similar later in processing.  To our knowledge, this 
remains an untested prediction of the LISA model. 
 

SYMMETRY and MINIMALITY 

Propositions 

 
CHINA 
people (Chinese-people) 
food (Chinese-food) 
government (Chinese-government) 
climate (Chinese-climate) 
history (Chinese-history) 
geography (Chinese-geography) 
customs (Chinese-customs) 
clothing (Chinese-clothing) 
economy (Chinese-economy) 
KOREA 
people (Korean-people) 
government (Korean-government) 
economy (Korean-economy) 
 

TRIANGLE INEQUALITY 

Propositions 

 
RUSSIA 
government (Russian-government) 
CUBA 
government (Cuban-government)   
climate (Cuban-climate) 
JAMAICA 
climate (Jamaican-climate) 
 

Table 1.  Propositions used in the simulations of the 
violations of the metric axioms.  Shared predicates across 
countries (e.g., government, across China and North Korea, 
or Russia and Cuba) are semantically identical, although 
their arguments (e.g., Chinese-government, Korean-
government, etc.) are not. 
Triangle inequality:  The triangle inequality states that  
d(x, z) can be no greater than d(x,y) plus d(y,z). Tversky 



(1977) translated this inequality into similarities by noting 
that s(x, y) and s(y, z) together set a “lower limit” on the 
similarity s(x, z).  An example that appears to violate this 
rule, taken from William James, is that Jamaica and Cuba 
are similar (geographically), and Cuba and Russia are 
similar (politically), but Jamaica and Russia are not similar 
at all (cf. Tversky & Gati, 1982). 
 LISA produces a similar violation given representations 
of Jamaica, Cuba, and Russia including only “geographical” 
and “political” propositions (see Table 1).  LISA gave 
Jamaica and Cuba a total similarity of 1.006, and Cuba and 
Russia a similarity of 0.735, but Jamaica and Russia a 
similarity of zero.  Clearly, whatever lower limit the triangle 
inequality should impose based on the first two similarities 
was violated. 
 
Alignable Differences (Markman & Gentner, 1996) 
 

Markman and Gentner (1996) argued that there are two 
psychologically distinct kinds of differences: alignable and 
non-alignable.  A difference is alignable when the different 
elements form a correspondence (e.g., the number of wheels 
on a car vs. motorcycle).  Conversely, a seat belt is a non-
alignable difference between a car and a motorcycle, 
because nothing from a motorcycle corresponds to the 
seatbelt of a car.  Markman and Gentner demonstrated that 
alignable differences have a greater impact on similarity 
than non-alignable differences. 
 

Markman & Gentner (1996) 

Propositions 

 
A  fixing (machine, car) 
B  fixing (machine, truck)  
C  fixing (machine, robot)  
D  fixing (machine, car); truck  
E  fixing (machine, car); robot  
 

Semantics 

 
car: s1, s2, s3, s4, s5 
machine: s1, s6, s7, s8, s9 
truck: s1, s2, s3, s10, s11 
robot: s1, s6, s13, s14, s15 
 

Table 2.  Propositions: The propositions and isolated objects 
(truck and robot in D and E) in the five situations depicted 
in Markman and Gentner (1996), Experiment 2 and 
simulated using LISA.  Semantics: The semantic features 
representing the objects in the LISA simulations. 
 
 We modeled this effect using stimuli from their second 
experiment.  In this study, participants rated the similarity of 
a base item, A, to four other items (B–E), which varied in 
their alignable and non-alignable differences with A.  The 
base item was a machine fixing a car, represented by fixing 
(machine, car), B was fixing (machine, truck), C was fixing 
(machine, robot), D was fixing (machine, car) with a truck in 
the background, and E was fixing (machine, car) with a 
robot in the background.  The truck and robot in B and C 
formed an alignable difference with the car in A, whereas in 

D and E they formed non-alignable differences with A.  In 
our simulations, the truck shared three of five features with 
the car, whereas the robot shared one (see Table 2). 
 

Comparison Alignable advantage 
A-B minus A-C 1.450 M&G 1996 A-D minus A-E 0.360 
A-B minus A-C 0.089 LISA A-D minus A-E 0.018 

 

Table 3. Alignable advantage for human subjects and LISA.  
A-B, for example, refers to the judged similarity of item A 
to item B. 
 
 As shown in Table 3, for both people and LISA, the effect 
of the truck vs. the robot is roughly four times greater when 
they are MIPs (A-B minus A-C) than when they are MOPs 
(A-D minus A-E).  Both the σMIP and the σMOP terms lead to 
this effect.  The A-B minus A-C difference is large because 
car maps to either truck (A-B) or robot (A-C), and car 
shares more semantic units with truck than with robot, 
resulting in a higher σMIP term for A-B relative to A-C.  
Additionally, the greater similarity of car to truck yields a 
higher σMOP term for A-B than for A-C.  The A-D minus   
A-E effect is smaller because the semantic similarities 
between car & truck and car & robot are only captured by 
the σMOP term; the σMIP term is dominated by the alignable 
difference of car and truck, and thus, differs little from A-D 
to A-E. 
 
MIPs and MOPs 
 

Goldstone demonstrated that MIPs and MOPs both affect 
similarity judgments (Goldstone, 1994; Goldstone & Medin, 
1994; Larkey & Markman, 2005).  An example MIP is 
matching colors on the t-shirts of two persons; a MOP 
would be matching colors on different garments. 
 To show how MOPs affect similarity, Larkey and 
Markman (2005) created pairs of objects that varied in 
shape and color.   Their participants rated the similarity of 
one pair of objects to another pair, where in each 
comparison, the second pair was a systematic 
transformation of the first.  A transformation was either a 
change in shape or a change in color.  Pairs compared to an 
“AB” stimulus are represented in Figure 2 along the 
abscissa, along with the human data and LISA’s fits.  
Matching values (of shape or color) are represented as 
matching letters. 
 LISA represented each pair with two propositions per 
object: color (obj1), shape (obj1), color (obj2), and shape 
(obj2).  Even with these very simple representations, LISA 
captures the vast majority of the variance in the human data 
(r2 = 0.91) and fits all ordinal differences in the similarity 
ratings (see Larkey and Markman, 2005).  To highlight the 
major results, LISA’s ratings were sensitive to both MIPs 
and MOPs and were sensitive to the interactions between 
MIPs and MOPs in the same way as human ratings. 



 Larkey and Markman (2005) further explored their results 
by fitting three similarity models to their data: SME 
(Falkenhainer, et al., 1989), CAB (Larkey and Love, 2003), 
and SIAM (Goldstone, 1994).  Only SIAM fit the full 
pattern of results shown in Table 2.  One major difference 
between SIAM and LISA is that similarity in SIAM is 
always mediated by mapping connections, or 
correspondences, between representation elements.  In 
contrast, LISA’s σMOP term factors MOPs into similarity 
independent of mapping connections.  In future work, we 
are interested in comparing the assumptions of these two 
mechanisms empirically. 
 

 
 

Figure 2.  Larkey and Markman (2005) data and LISA fits. 
 

Discussion 
 
LISA was designed to simulate analogical reasoning, not 
similarity judgments.  However, LISA simulated numerous 
findings from the similarity literature using only algorithmic 
ingredients already in place for other functions.  These 
successes show that LISA’s knowledge representations may 
accurately simulate those underlying peoples’ explicit 
similarity judgments, in particular, and relational thought 
more generally. 
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