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Abstract

Process models of higher cognition come in three basic varieties: traditional symbolic models, traditional 

connectionist models, and symbolic-connectionist models. This chapter reviews the basic representational 

and processing assumptions embodied in each of these approaches and considers the strengths and 

limitations of each.
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Models in cognitive science span all three of 
Marr’s (1982) levels (see Holyoak & Morrison, 
Chapter 1). Normative systems (see Chater & 
Oaksford, Chapter 2), including the Bayesian 
framework (see Griffi  ths et al., Chapter 3), address 
the level of computational theory; neural models 
(see Morrison & Knowlton, Chapter 6) are speci-
fi ed at the implementation level; and information-
processing models, or process models (perhaps the 
most common type of model in cognitive science), 
are specifi ed at the level of representation and 
algorithm.

Process models of higher cognition come in 
three basic varieties: traditional symbolic models, 
traditional connectionist models, and symbolic-
connectionist models. Th is chapter reviews the 
basic representational and processing assumptions 
embodied in each of these approaches and considers 
the strengths and limitations of each.

Symbolic Models
Th e earliest process models of human cognition 

were symbolic in the traditional sense of the term 
(e.g., Anderson, 1982; Newell & Simon, 1972), 
and traditional symbolic modeling continues to 
be important today (see Gentner & Forbus, 2011; 

Taatgen & Anderson, 2008, for reviews). Although 
the details of specifi c symbolic models diff er, at their 
core they share the underlying assumption that the 
mind is a symbol system that is best modeled using 
symbolic operations on symbolic data structures 
(see also Fodor & Pylyshyn, 1988).

Symbolic Representations
Any representational system consists minimally 

of a vocabulary of representational elements (e.g., 
symbols in a symbolic model or nodes in a neural or 
Bayesian network) and a set of rules for inferring new 
statements from existing statements (see Markman, 
Chapter 4). In order for a representational system 
to count as symbolic, it must also make it possible 
to combine its basic representational elements into 
complex structures capable of expressing an open-
ended set of relations (Pierce, 1879, 1903; see also 
Deacon, 1997).

Traditional symbolic models use various repre-
sentational formalisms, the most common being 
propositional notation (or labeled graphs). 
Propositional notation takes the general form pred-
icate (argument1, argument2, . . . argumentn), where 
predicate specifi es some property or relation, argu-
ments 1 . . . n are the arguments of that predicate, 

C H A P T E R C H A P T E R C H A P T E R 

Computational Models of 
Higher Cognition

Leonidas A. A. Doumas and John E. Hummel

5



doumas,  hummel 53

and n is typically three or less. For example, gave 
(John, Mary, book) species that John gave Mary a 
book, and heavy (book) specifi es that the book is 
heavy. Labeled graphs specify the same information 
as propositional notation (i.e., the two systems are 
isomorphic). In graphical form, nodes represent 
predicates and their arguments and arcs represent 
the bindings of arguments to roles of the predicate 
(see Fig. 5.1). Both formalisms are symbolic in the 
sense described earlier because they make it possi-
ble to form an open-ended (indeed, infi nite, as both 
formalisms permit recursion) set of relational state-
ments with a fi nite vocabulary of predicates and 
objects.

Processes
Symbolic representations such as propositions 

and labeled graphs provide a powerful represen-
tational platform that makes many kinds of pro-
cesses convenient to perform. For example, Forbus, 
Gentner, and their colleagues (Falkenhainer, Forbus, 
& Gentner, 1989; Forbus, Gentner, & Law, 1995) 
have demonstrated that graph matching—a pro-
cess of fi nding isomorphic substructures in pairs of 
(potentially very large) systems of labeled graphs—
provides an excellent basis for simulating analogi-
cal reasoning (i.e., the process of reasoning about a 
novel target domain based on a more familiar source 
domain; see Holyoak, Chapter 13).

Similarly, John Anderson and his colleagues 
have used propositional notation in their various 
ACT models (e.g., Anderson, 2007; Anderson & 
Lebiere, 1998) to very successfully simulate aspects 
of memory, learning, and inference. Th e principles 
embodied in ACT have even been used to develop 
intelligent tutoring systems that model the learner 
during the learning process itself, in order to opti-
mize instruction and learning (Anderson, Betts, 
Ferris, & Fincham, 2010).

In contrast to the graph matching algorithms that 
Gentner, Forbus, and colleagues have used to model 
analogical reasoning, the ACT models are based on 
production systems: systems of symbolic rules that 
operate on propositional knowledge representations 
to guide action and generate inferences (see Fig. 
5.2). Like the graph-matching algorithms of Forbus, 
Gentner, and colleagues, production systems derive 
much of their computational power from the fact 
that they operate on symbolic knowledge structures. 
For example (see Fig. 5.2), one rule that might be 
part of a production system is if (larger (x, y) and 
larger (y, z)) then larger (x, z). Because this rule is 
symbolic, it can automatically be applied to any x, 
y, or z, regardless of their semantic content (e.g., it 
could infer that a battleship is larger than a subma-
rine from the fact that a battleship is larger than a 
cruiser and a cruiser is larger than a submarine, and 
with equal facility make the same inference in the 
context of a Rottweiler, a housecat, and a mouse). 
As trivial as this ability might appear, it is a power-
ful one that cannot not be taken for granted (as we 
shall see in the context of connectionist models in 
the next section).

In our previous example, the production rule was 
completely abstract, defi ned over empty variables, 
x, y, and z. But production rules can also be defi ned 
over specifi c arguments (as in, if (see (me, neighbor’s 
dog), then run(me)). Moreover, the rules need not be 
accurate. For example, a production system used to 
model the behavior of a young child might include 
a rule like if (moves(x), then (has-legs(x)), refl ecting 

Gravity

Earth Sun

CAUSE

REVOLVE-
AROUND

Fig. 5.1 A labeled-graph representation of the higher order rela-
tion, cause(gravity, revolve-around(earth, sun)). Ovals represent 
relations; rectangles, objects; lines, arcs.

larger (b-ship, cruiser)
larger (cruiser, destroyer)
larger (destroyer, sub.)

(1) If larger (x,y) and larger (y,z)
              than larger (x,z)
(2) If larger (x,y)
              than heavier (x,y)

Knowledge Base Inference Rules

Fig. 5.2 An example of a simple production 
system.
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the child’s inaccurate belief that all moving things 
have legs (e.g., Sheya & Smith, 2006).

Strengths
Symbol systems have been used to successfully 

model a wide range of cognitive phenomena. Th e 
successes of the symbolic approach derive from the 
fl exibility of symbolic representations, in particular 
the fact that predicates are free to vary in their argu-
ments. As a result, anything that is learned about 
a predicate (e.g., in the form of a production rule) 
can, in the limit, be automatically applied to any 
new argument(s) taken by that predicate.1 Th is 
kind of open-ended generalization—which permits 
extrapolation beyond the examples from which the 
rule is learned—is a very powerful inductive mech-
anism (Holland, Holyoak, Nisbett, & Th agard, 
1986; Hummel & Holyoak, 2003). Without it, 
we would be limited to only those inferences and 
generalizations that can be found by interpolating 
over the training examples (Marcus, 2001). Th at is, 
without the ability to learn variablized rules (i.e., 
rules defi ned over predicates that are free to vary in 
their arguments), having learned that relative size is 
a transitive relation (i.e., the “if larger . . . ” rule) in 
the context of the naval vessels from the example 
above, we would be at a complete loss to infer larger 
(Rottweiler, mouse) given larger (Rottweiler, house-
cat) and larger (housecat, mouse) (see, e.g., Doumas, 
Hummel, & Sandhofer, 2008; Holyoak & Hummel, 
2000; Hummel & Holyoak, 1997, 2003). Penn, 
Holyoak, and Povinelli (2008; see Penn & Povinelli, 
Chapter 27) have argued convincingly that this kind 
of relational generalization is the most important 
ability distinguishing human cognition from the 
cognitive abilities of our closest primate cousins.

It is this same capacity for variablized, relational 
thinking that allows us to make analogies and to 
learn and reason from abstract schemas (Holland 
et al., 1986; Holyoak & Hummel, 2001; Hummel 
& Holyoak, 2003). Gick and Holyoak (1983) dem-
onstrated that when people draw analogies between 
similar stories (i.e., specifying which elements of one 
correspond to which of the other), they may induce 
generalized schemas describing the shared aspects of 
those stories. For example, given one story in which 
Mary is the enemy of Bill and Bill is the enemy of 
Ted, so Mary regards Ted as her friend, and another 
story in which Dirk is the enemy of Roger and 
Roger is the enemy of Jake, so Dirk regards Jake as 
his friend, one might infer a schema of the general 
form, if enemy-of (person-1, person-2) and enemy-of 

(person-2, person-3), then friend-of (person-3, per-
son-1). If one were then to come across a situation 
in which Joe was the enemy of Tim, and Tim the 
enemy of Bill, one could map Joe onto person-1, 
Tim onto person-2, and Bill onto person-3, and 
subsequently infer that Bill is a friend of Joe. Notice 
that this sort of schema-driven inference is formally 
equivalent to inference based on a production rule 
in which the antecedent condition (the if portion 
of the rule) is fulfi lled and the consequent (the then 
portion of the rule) fi res (Anderson & Lebierre, 
1998; Newell, 1990).

In the limit, the capacity to represent relational 
rules (or schemas) makes it possible to represent 
and reason about universally quantifi ed functions 
(see Marcus, 2001). For example, consider the rule 
“∀x,y,z if (pass (x, y), collect (x,z))” (or, for all x, if 
x passes y, then x collects z). Th e rule can apply to 
any set of x, y, and z, such as a player (x) passing the 
“GO” square (y) in Monopoly and collecting $200 
(z), or a person (x) passing the border of a coun-
try (y) and collecting a passport stamp (z). Without 
the power of symbolic representations—specifi cally, 
without the ability to represent predicates that are 
free to vary in their arguments—this kind of fl ex-
ibility would be impossible.

Weaknesses
Despite their successes, a number of criticisms 

have been leveled against traditional symbolic 
models of cognition. A very basic one concerns the 
question of how (and even whether) it is possible to 
learn symbolic representations. How, for instance, 
would we learn a relational predicate like larger(x, y)? 
Th is question is made diffi  cult, in part, by the very 
property that makes these representations powerful, 
namely, the fact that they are free to vary in their 
arguments: Although larger (battleship, cruiser) and 
larger (Rottweiler, housecat) express diff erent ideas, 
they nonetheless express, if not identical, then at least 
very similar relations. It is our appreciation of this 
similarity that allows us to grasp that the battleship 
corresponds to the Rottweiler rather than the house-
cat.2 In turn, the predicate’s ability to remain (at 
least largely) invariant over changes in its arguments 
renders it challenging to learn: We are never exposed 
to disembodied “larger-ness”; rather, all those cases 
where we have had the opportunity to observe an 
instance of the larger relation have presented it in the 
context of one specifi c thing being larger than some 
other specifi c thing. Given this type of input, how do 
we ever learn to represent larger in a way that is (even 
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partially) independent of its arguments (Doumas et 
al., 2008; Kellman, Burke, & Hummel, 1999)? Th e 
diffi  culty of this question—along with the fact that 
rather than answering it, traditional symbolic mod-
elers have often simply hand-coded their symbolic 
representations—has led some to wonder whether 
it is even possible to learn symbolic representations, 
such as predicates, from nonsymbolic inputs (e.g., 
early perceptual representations), a concern that 
has been cited as one of the most signifi cant short-
comings of the symbolic approach (see, e.g., Leech, 
Mareschal, & Cooper, 2008; Munakata & O’Reilly, 
2003; O’Reilly & Busby, 2002; O’Reilly, Busby, 
& Soto, 2003). Certainly, with tools of traditional 
symbolic models it is unclear how these represen-
tations can be learned in the fi rst place. However, 
as elaborated later this shortcoming does not mean 
that symbolic representations cannot be learned at 
all (e.g., Doumas et al., 2008).

A second limitation of the traditional symbolic 
approach, as an account of the human cognitive 
architecture, is that human mental representations 
have semantic content: Th ey are about things, and 
they somehow naturally capture how those things 
are similar to and diff erent from one another. By 
contrast, traditional symbolic approaches to cog-
nition do not (and, worse, cannot; Doumas & 
Hummel, 2004) capture similarity relations among 
the entities to which symbols refer. For example, the 
symbols Rottweiler and battleship fail to specify what 
these concepts have in common (precious little 
besides being objects found on Earth) and how they 
diff er (e.g., in animacy, size, and function). Based 
on the symbols alone, one’s best guess about what 
battleships and Rottweilers have in common is that 
both require 10 letters to spell (11 in the plural). 
Moreover, the meanings of various relations seem to 
apply specifi cally to individual relational roles, rather 
than to the relation as a whole. As a result, it is easy to 
appreciate that the agent (i.e., killer) role of murder 
(x, y) is similar to the agent role of attempted-murder 
(x, y), even though the patient roles diff er (i.e., the 
patient is dead in the former case but not the latter); 
and the patient role of murder (x, y) is similar to the 
patient role of manslaughter (x, y), even though 
the agent roles diff er (i.e., the act is intentional in 
the former case but not the latter).

Th e semantic properties of human mental rep-
resentations manifest themselves in countless 
ways in human cognition, infl uencing memory 
retrieval (e.g., Gentner, Ratterman, & Forbus, 
1993; Ross, 1987; Wharton, Holyoak, & Lange, 

1996), categorization, and reasoning (Bassok, Wu, 
& Olseth, 1995 Krawczyk, Holyoak, & Hummel, 
2005; Kubose, Holyoak, & Hummel, 2002; Ross, 
1987). Th e meanings of relations and their argu-
ments also infl uence which inferences seem plau-
sible from a given collection of stated facts. For 
instance, upon learning about a culture in which 
nephews traditionally give their aunts a gift on a 
particular day of the year, it is a reasonable conjec-
ture that there may also be a day on which nieces in 
this culture give their uncles gifts. Th is inference is 
based on the semantic similarity of aunts to uncles 
and nieces to nephews, and on the semantics of gift 
giving, not the syntactic properties of the give-gift 
relation. Given the important role of semantics in 
the mental representation of relational roles and 
the objects that fi ll those roles, an important crite-
rion for a general account for the human cognitive 
architecture is that the representations on which it 
is based be able to capture (or at least approximate) 
that semantic content.

On this point, traditional symbolic models based 
on varieties of propositional notation and labeled 
graphs fare poorly. It has been known for a long time 
that such representational schemes have diffi  culty 
capturing shades of meaning and other subtleties 
associated with semantic content. Th is limitation 
was a central focus of the infl uential critiques of sym-
bolic modeling presented by the connectionists in 
the mid-1980s (e.g., Rumelhart, McClelland, & Th e 
PDP Research Group, 1986). A review of how tra-
ditional symbolic models have handled this problem 
(typically with look-up tables of one sort or another) 
also reveals that the question of semantics is, in the 
very least, a thorny inconvenience (see Doumas & 
Hummel, 2004, for an argument that the problem 
is more than simply an inconvenience).

Yet a third limitation of traditional symbolic 
approaches, also cited by the connectionists in the 
mid-1980s, is that they make no obvious contact 
with Marr’s (1982) third level of analysis, physical 
implementation: It is not at all clear how some-
thing like a graph-matcher or a production system 
would or could be implemented in the brain (but 
see Anderson, Qin, Jung, & Carter, 2007, for some 
progress in this direction).

Connectionist Models
Connectionist neural-network models (also referred 

to as parallel distributed processing, or PDP) were 
motivated in large part by the perceived limitations of 
the traditional symbolic approach. Neurally inspired 
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models date back to at least the 1940s (McCulloch 
& Pitts, 1943 Rosenblatt, 1958). However, their 
more recent appeal as a general account of the human 
cognitive architecture—and as a serious alternative 
to traditional symbolic models—was launched by 
the work of Rumelhart and colleagues in the mid-
1980s (see McClelland et al., 1986; Rumelhart et al., 
1986).

Like symbolic models, a variety of connectionist 
models have been proposed to simulate a wide range 
of cognitive phenomena; also like symbolic models, 
the diverse models in the traditional connectionist 
approach share some basic assumptions about how 
information is represented and processed.

Representations
Connectionist models consist of collections of 

simple processors, represented by nodes or units, 
that are connected to form large networks. Units 
in connectionist networks take activations, typi-
cally in the range 0–1. Representations are patterns 
of activation across units in the system. Th ese pat-
terns might correspond to a perception, a thought, 
a memory, a concept, or any other cognitive state. 
For example, in the very simple network depicted 
in Figure 5.3, the pattern of activation on the units 
depicted in Figure 5.3a might correspond to the 
concept “dog,” the pattern of activation depicted in 
Figure 5.3b might correspond to “cat,” and the pat-
tern of activation depicted in Figure 5.3c to “shark.” 
Other concepts like “animal,” “large,” or “food” 
would be represented as other patterns.

An important distinction in connectionist 
models is the distinction between localist and dis-
tributed representations. A localist representation is 
one in which individual units have meaning (e.g., a 
unit for “dog”); a distributed representation is one 
in which the meaning of a concept is carried by 
a pattern of activation across many separate units 
(e.g., the concept dog being represented by units for 
“animal,” “mammal,” “canine,” “domesticated,” etc.). 
As illustrated by this example, whether a representation 
is localist or distributed is most often a function of the 

relationship between the concept and the representa-
tion: With respect to the concept “dog,” units rep-
resenting “animal,” “mammal,” and so on constitute 
a distributed representation; but with respect to each 
of the more general concepts “animal,” “mammal,” 
and so on, those same units constitute a localist rep-
resentation. Th us, although the terms “localist” and 
“distributed” are most commonly used to describe 
representations (without regard for the entities they 
represent), they are better thought of as two-place 
predicates of the form: representation R is localist (or 
distributed) with respect to concept C (i.e., distributed 
(R, C)). Th e one exception to this generalization of 
which we are aware is some vector-symbolic architec-
tures (such as those based on holographic reduced rep-
resentations; e.g., Plate, 1991), in which the meaning 
of a unit in any pattern of activation depends entirely 
on the activity of the other units in that pattern. Such 
representational schemes are entirely distributed in 
the sense that no unit in the pattern can be inter-
preted without reference to the others.

One very appealing aspect of distributed rep-
resentations (although not those that are entirely 
distributed) is that they very naturally capture the 
similarities of diff erent concepts. In our simple net-
work, the concepts of “dog” and “cat” are similar to 
the extent that their representations overlap. Th us, 
the network naturally captures the fact that dogs are 
more similar to cats than to sharks as a natural con-
sequence of its representational scheme. Although 
there is debate about the utility of distributed and 
localist codes in connectionist systems (see, e.g., 
Page, 2000), most connectionist models use some 
combination of the two (e.g., O’Reilly & Busby, 
2002; Rogers & McClelland, 2004).

Processes
Units in a connectionist system are densely inter-

connected via weighted connections. Positive weights 
act as excitatory connections, so that activity on one 
unit tends to activate the other, and negative weights 
act as inhibitory connections, so that activity in one 
unit tends to reduce activity in the other.

(a) dog

(b) cat

(c) shark
Fig. 5.3 Examples of distributed representations of the 
concepts, (a) dog, (b) cat, and (c) shark. Note that the 
same set of units is depicted in each row.
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Th e architecture of a connectionist network is 
defi ned by the manner in which units are connected to 
one another. Th e most common architectures are feed-
forward (e.g., McClelland & Rummelhart, 1985), 
recurrent (Elman, 1990), auto-associative (Hop-
fi eld, 1982), and hybrids thereof (e.g., O’Reilly, 2006). 
In a feed-forward architecture, units are arran-
ged in layers such that the units in one layer pass acti-
vation (both excitation and inhibition) to the units 
in the next layer, but units do not typically pass acti-
vation to other units in the same layer or in earlier 
layers (see Fig. 5.4a). Recurrent networks (Fig. 5.4b) 
are much like feed-forward networks, except that 
the activation pattern on a “hidden” layer at time 
t serves as part of the input at time t + 1, thereby 
providing a kind of memory for past states of the 
network (see, e.g., Elman, 1990). In an auto-asso-
ciative architecture (Fig. 5.4c) every unit typically 
has connections to every other unit.

Despite their diff erences, connectionist networks 
(at least traditional, nonsymbolic ones as opposed to 
symbolic ones, as described later) all share the prop-
erty that the entire currency of computation is activa-
tion: Units excite or inhibit one another and over time 
the state of the network settles into some stable pat-
tern of activation, either on the output units (in the 
case of feed-forward and recurrent networks) or over 
the network as a whole (in the case of auto-associative 
networks). Th e fi nal or output pattern of activation is 
interpreted as the network’s response to its input.

Strengths
Th e strengths of the traditional connectionist 

approach are numerous. Perhaps most obviously, 
connectionist networks off er a link between cognitive 
phenomena and their potential neural underpinnings: 
It is easy to see how the computational principles 
embodied in a connectionist network could be real-
ized in neurophysiology. In addition, connectionist 
networks, with their representations based on distrib-
uted patterns of activation, provide for a natural kind 
of automatic generalization. If the representation of, 

say, dog, consists of one pattern of activation (e.g., on 
the input units of some network) and the representa-
tion of cat consists of a similar pattern of activation, 
then many things learned about dogs will generalize 
automatically to cats (see McClelland et al., 1986). 
Th is kind of automatic generalization accounts for the 
semantic richness of human mental representations in 
a way that traditional symbolic representations simply 
cannot (Doumas & Hummel, 2005).

A third strength of the traditional connection-
ist approach is that, in contrast to the traditional 
symbolic approach, it provides a way to seamlessly 
integrate questions of representation with questions 
of learning: Connectionist networks are capable of 
learning their own representations for things, both 
in the “hidden” layers of feed-forward and recurrent 
networks, and in classes of unsupervised learn-
ing models (which represent a hybrid of feed-for-
ward and auto-associative architectures; see, e.g., 
Marshall, 1995).

Still a fourth strength of the connectionist app-
roach is that, like biological neural networks, con-
nectionist networks degrade gracefully with damage. 
As such, they provide a natural platform for simu-
lating the eff ects of brain damage, normal aging, 
and even cognitive development (e.g., Colunga & 
Smith, 2005; Joanisse & Seidenberg, 1999; Li, 
Lindenberger, & Sikstrom, 2001).

A fi fth, less often cited, strength of connectionist 
models is their mathematical simplicity. In contrast 
to symbolic models, which are typically complex 
enough to defy proofs of their computing abilities, 
connectionist networks are comparatively simple, 
typically being constrained to using a fi xed activation 
function in a fi xed architecture. Th is makes it possible 
to prove, for example, that a three-layer (that is, three 
layers of connections, or a layer of input units, two 
hidden layers of units, and a layer of output units) 
feed-forward nonlinear network (where “nonlinear” 
refers to the activation function of the units in the 
network) is capable of computing any computable 
mapping.

(a) (b) (c)

Fig. 5.4 Examples of (a) feed-forward, (b) recurrent, and (c) auto-associative connectionist systems. See text for details.
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Weaknesses
Despite their strengths, traditional connectionist 

models have some important limitations as mod-
els of higher cognition in humans. Most notably, 
they lack symbolic competence. Many authors have 
written extensively on this limitation (e.g., Doumas 
et al., 2008; Hummel, 2000; Hummel & Biederman, 
1992; Hummel & Holyoak, 1997, 2003; Marcus, 
1998, 2001; von der Malsburg, 1981, 1999), but its 
importance remains underappreciated.

Although a connectionist network can compute 
any computable mapping, it eff ectively must be 
trained on each individually. Although a properly 
trained NN can interpolate between learned input-
output mapping, it cannot extrapolate to mappings 
that lie outside of its training set (e.g., Marcus, 1998; 
St. John, 1992; St. John & McClelland, 1990). 
Symbolic systems by contrast including humans 
extrapolate easily (e.g., as in the case of human rela-
tional reasoning; Hummel & Holyoak, 2003).

Th e fundamental reason why connectionist models 
fail to achieve symbolic competence is that tradi-
tional connectionist representations simply do not 
have enough degrees of freedom—they is, they are 
formally too weak (Hummel et al., 2004). A sym-
bolic representation, such as propositional notation, 
has two degrees of freedom with which to expresses 
information. Th e fi rst is the choice of which symbols 
to use: If a modeler wishes to represent that John 
loves Mary, she would use the symbols loves, John 
and Mary; to represent that John hates Mary, she 
would use hates, John and Mary. Th e corresponding 
degree of freedom in a connectionist representation 
is activation: To represent that John loves Mary, a 
connectionist network might activate units (or, in 
the distributed case, collections of units) represent-
ing loves, John and Mary.

Th e second degree of freedom in a symbolic 
representation specifi es the bindings of arguments 
to the roles of the relation: To represent that John 
loves Mary, it is traditional to place John in the fi rst 
slot inside the parentheses following the relation 
and Mary in the second slot, forming loves (John, 
Mary); to specify that Mary loves John, the modeler 
would place the very same symbols in the opposite 
slots to form loves (Mary, John). (An explanation for 
the italics appears two paragraphs later.) Th ere is no 
analogous second degree of freedom in a traditional 
connectionist representation. Activating units or pat-
terns for loves, John and Mary, could equally repre-
sent “John loves Mary” or “Mary loves John” (or, in 
the case of a distributed representation, a statement 

about a narcissistic hermaphrodite; Hummel & 
Holyoak, 1997; von der Malsburg, 1981), so it is 
impossible to tell which is the intended meaning of 
the representation. Th e reason is that this represen-
tation fails to specify the bindings of the arguments 
to the roles of the relation. Unlike the symbolic 
representation, the traditional connectionist repre-
sentation lacks a degree of freedom with which to 
specify this information.

Th e most common response to this problem is to 
use varieties of conjunctive coding to carry binding 
information. Under conjunctive coding, units repre-
sent, not objects or relational roles, but conjunctions 
of objects in relational roles. For example, rather 
than representing loves, John and Mary, the units 
in a conjunctive code might represent conjunctions 
such as John+lover, Mary+beloved, Mary+lover, 
and John+beloved. Now, to represent that John 
loves Mary, the network activates John+lover and 
Mary+beloved; to represent that Mary loves John, 
it activates Mary+beloved and John+lover. Specifi c 
varieties of conjunctive coding include tensor prod-
ucts (Halford, Wilson, & Phillips, 1998; Smolensky, 
1990), holographic reduced representations (Plate, 
1991), and spatter codes (Kanerva, 1998). Th ese 
approaches vary in their particulars, but they all 
share the property that units represent specifi c con-
junctions of roles and arguments rather than repre-
senting the roles or arguments individually.

Models based on conjunctive coding have been 
applied with varying degrees of success in various 
domains. And indeed, some kind of conjunctive cod-
ing is certainly necessary for encoding bindings in 
long-term memory (Doumas et al., 2008; Hummel & 
Biederman, 1992; Hummel & Holyoak, 1997, 2003; 
Shastri, 2002). But as a general, or the only, solu-
tion to the binding problem in connectionist or 
neural networks, conjunctive coding is sharply lim-
ited. Recall the italicized very same symbols wording 
from two paragraphs earlier. It is the fact that the 
symbols in loves (John, Mary) are the same as those 
in loves (Mary, John) that allows you to know what 
these statements have in common: Both are about 
loving, John and Mary. Th e same is true for the 
statements jonks (grummond, steplock) and jonks 
(steplock, grummond): Although these statements 
are largely meaningless, because they use and reuse 
the same symbols, in the very least we know that, 
whatever “jonking” is, the grummond is doing it (or 
else stands in that relation) to the steplock in one 
case and the steplock is doing it (or stands in that 
relation) to the grummond in the other.
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Th is ability to preserve the identity of symbols 
across diff erent relational structures is a characteristic 
of symbolic representations, made possible by the fact 
that they have two degrees of freedom, that is abso-
lutely essential for symbolic thought—such as reason-
ing based on analogies, schemas, or rules (Holyoak & 
Hummel, 2002; Hummel & Holyoak, 1997, 2003; 
Penn et al., 2008). It is for this reason that there are 
no successful traditional connectionist models of 
analogy (see Leech, Mareschal, & Cooper, 2008, for 
an attempt, the shortcomings of which illustrate the 
need for that second degree of freedom).

A number of connectionist models have been 
developed that appear to solve the problem of rela-
tional processing. We argue that these models in 
fact fail to simulate human relational reasoning and 
instead simulate a proxy to relational reasoning.

A connectionist model developed by O’Reilly 
and Busby (2002) illustrates what it is possible (and 
what it is not) without the second degree of repre-
sentational freedom enjoyed by symbolic systems. 
O’Reilly and Busby’s model is designed to answer 
questions about the spatial relations among objects. 
Th e model consists of “input/output” units repre-
senting (a) object features at each of 4x4 locations 
in the visual fi eld, (b) the locations of those objects, 

(c) the objects’ identities (independent of location), 
and (d) relations among the objects (e.g., above/
below). Th ere are also “query units” associated with 
the input/output units (used for querying the model 
after training). Th ese units are connected to (and 
communicate via) a set of “hidden” units, forming a 
large auto-associative network. Th e model is trained 
by pairing patterns of activation across the input/
output units and learning connections between 
those units and the hidden units using the Leabra 
learning algorithm (O’Reilly, 1996). After training, 
the model can be presented with objects in vari-
ous locations and be asked questions about them. 
For example, in order to ask, “What is at location 
3,2?” the location query unit would be activated, 
along with the unit for location 3,2. No units in the 
“object” or “relation” arrays would be activated. Th e 
model’s task would be to activate the object units 
corresponding to the distributed representation of 
whatever object resides at location 3,2. Or if asked, 
“What is above?” the “above” query unit would be 
activated, and the model’s task would be to activate 
the representation of the object that is above the 
other, i.e., that in location 2,2 (see Fig. 5.5).

O’Reilly and Busby (2002) trained the model on 
various subsets (from 1.3% to 25%) of the input/

Location (1,1) Location (1,2) Location (1,3) Location (1,4)

Location (2,1) Location (2,2) Location (2,3) Location (2,4)

Location (3,1) Location (3,2) Location (3,3) Location (3,4)

Location (4,1) Location (4,2) Location (4,3) Location (4,4) Fig. 5.5 Example of the task sim-
ulated by the O’Reilly and Busby 
(2002) model. A circle is presented 
in location 2,2, and a square in loca-
tion 3,2. Th e model might be asked, 
“What is above location, 3,2” (which 
should activate location 2,3).
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query conjunctions it is capable of representing, and 
tested it for its ability to generalize to the untrained 
input/query conjunctions. After training on 25% of 
its input space, the model successfully generalized 
to roughly 95% of the untrained inputs. Based on 
this performance, O’Reilly and Busby concluded 
that “ . . . rich distributed representations containing 
coarse-coded conjunctive encodings can eff ectively 
perform binding” (p. 6).

However, this claim, and the simulations on which 
it is based, deeply underestimate the power of rela-
tional perception, thought, and generalization. Being 
able to answer “What is above?” is not the same as 
being able to represent “x is above y,” for all x and all 
y, and being able to draw inferences based on the lat-
ter—for example, if x is above (and on) y, then x could 
potentially fall off  of y. Far from this, the O’Reilly and 
Busby (2002) model can simply say “what is above”: 
it can answer “x is above” (provided the features of 
x were part of its training regime), but it cannot say 
what x is above: It lacks even the basic capacity to 
specify the second argument of the above relation.

What makes human relational perception and 
thought powerful (and diffi  cult to model) is not 
our ability to answer simple questions of the form 
“What is above?” (a question the O’Reilly & Busby, 
2002, model answers based strictly on associative 
learning), but our ability to represent relations such 
as above (x, y), explicitly, to bind arguments to the 
roles of those relations, and to use that knowledge 
to make inferences about x and y for all x and y (not 
just those whose features have appeared in our train-
ing space). Th e O’Reilly and Busby model, by con-
trast, can only answer questions whose answers it 
has already been taught. Like other traditional con-
nectionist models, the O’Reilly and Busby model 
can only generalize to new patterns by interpolat-
ing among patterns on which the model has been 
explicitly trained (e.g., patterns that are linear com-
binations of the examples on which the model has 
already been trained). And it cannot even represent, 
much less answer, questions of the form, “If x is in 
top of y, can x fall off  of y or can y fall off  of x?,” a 
question even a 3-year-old child would look at you 
askance for asking her in the fi rst place.

Th is limitation is not restricted to the O’Reilly 
and Busby (2002) model, but is true of all mod-
els that have tried to tackle symbolic processing 
using strictly associationist tools (e.g., Rogers & 
McClelland, 2004, 2008; St. John & McClelland, 
1990). As noble as these eff orts are, their tools simply 
are not up to the task.

Symbolic-Connectionist Models
In response to the complementary strengths and 

weaknesses of the traditional symbolic and connec-
tionist approaches, some researchers have attempted 
to implement symbolic structures within connec-
tionist architectures with distributed representa-
tions. In principle, achieving symbolic competence 
in a connectionist system should not be diffi  cult: 
All that is needed is some basis for representing 
role-fi ller bindings in a way that allows the repre-
sentation of the roles and fi llers to remain invariant 
(i.e., to be “reused” as they are in symbolic systems) 
across diff erent bindings. Proposed solutions to this 
problem come in two general forms.

Models Based on Vector Multiplication
One approach to implementing symbolic struc-

ture in connectionist systems is to use tensor prod-
ucts (Smolensky, 1990; see also Halford et al., 1994; 
Halford et al., 1998)—or their variants, such as 
holographic reduced representations (HRRs; Plate, 
1991), spatter codes (Kanerva, 1998), or circular 
convolutions (Metcalfe, 1990)—to represent role-
fi ller bindings. A tensor product is an outer prod-
uct of two or more vectors (i.e., a matrix) that is 
treated as an activation vector rather than a matrix 
(Smolensky, 1990). For example, to bind a one-
place predicate, r (such as eats (x) or runs (x)), to its 
argument, f, the tensor rf is formed by multiplying 
the ith element of vector r, representing the role, by 
the jth element of f, representing the fi ller (for all 
combinations of i and j):

 rfij = rifj. (1)

Th ere are two ways to bind multiplace relations 
to their arguments using tensor products. One is to 
defi ne tensors of progressively higher rank (where 
the rank of a tensor is the number of vectors that 
come together to defi ne it; see, e.g., Halford et al., 
1994). For example, a two-place relation (such as 
loves (x, y) or larger-than (x, y)) could be represented 
by the rank three tensor rfg:

 rfgijk = rifjgk, (2)

where r represents the relation (e.g., loves in loves (x, 
y)), f represents the argument bound to the fi rst role 
of the relation (x), and g represents the argument 
bound to the second (y). An alternative approach 
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is to designate separate tensors for each role-fi ller 
binding and represent the complete proposition 
as their sum (e.g., Tesar & Smolensky, 1994). For 
example:

 rf  = rf1+rf2, (3)

where rf1 is a tensor representing the binding of the 
fi rst role to its argument and rf2 represents the bind-
ing of the second role to the second argument.

Th e deep problem with all these approaches is that, 
because tensors are a variety of conjunctive coding, 
they violate role-fi ller independence. A tensor is a 
product of two or more vectors (see Eqs. 1–3), so the 
similarity of two tensors—and hence the ability to 
generalize something learned about one of them to 
the other—scales with the product of the similarities 
of the simple vectors from which the tensors were 
created. For example, if vector similarity is defi ned 
in terms of the inner (“dot”) product, then:

 rf1·rf2 = (r1·r2)(f1·f2), (4)

where rf1 and rf2 are tensors made from r1 and f1 and 
from r2 and f2, respectively, and · indicates the dot 
product. Similarly, if vector similarity is defi ned in 
terms of the cosine of the angle between two vec-
tors, then:

 cos(rf1, rf2) = cos(r1, r2)cos(f1, f2). (5)

Under both these defi nitions of vector similarity, 
two tensors will be similar to one another only to 
the extent that both their roles and fi llers are similar: 
Identical roles, bound to completely diff erent fi ll-
ers, result in completely diff erent tensor products, 
precluding any generalization from one to the other. 
Th is property is true, not only of tensor products, 
but of any binding scheme based on tensors (such 
as HRRs; Plate, 1991).

Th is property of tensors refl ects the fact that they 
are the result of vector multiplication: Since role 
and fi ller vectors are multiplied by one another to 
form role-fi ller bindings, the similarities of those 
vectors are multiplied to determine the similarity of 
the resulting tensors. Th is observation suggests that 
one way to avoid role-fi ller interaction in role-fi ller 
binding similarity is to perform role-fi ller binding 
by role-fi ller addition rather than multiplication.

Models Based on Vector Addition
A second approach to implementing symbolic 

structure in connectionist networks is to bind roles 
to fi llers by vector addition, which can be imple-
mented as synchrony of neural fi ring (see Hummel 
& Holyoak, 1997, 2003). Th e basic idea is that 
units representing a relational role are added to (i.e., 
fi re in synchrony with) the units representing the 
argument fi lling that role; units representing sepa-
rate role-fi ller bindings fi re out of synchrony with 
one another. A related proposal is to represent role-
fi ller bindings by systematic asynchrony of fi ring, 
such that units representing a relational role fi re, for 
example, just before the units representing its fi ller, 
and separate bindings fi re in more distant temporal 
relations (see Doumas & Hummel, 2005; Doumas 
et al., 2008; Love, 1999). In either case, the binding 
is represented as a kind of vector addition because a 
given vector always represents a given role or object, 
regardless of the object or role to which it happens 
to be bound, and the bindings of roles to their fi ll-
ers are represented by operations (synchrony or sys-
tematic asynchrony of fi ring) that put roles together 
with their fi llers in an additive rather than multipli-
cative fashion.

However, synchrony of fi ring cannot be the 
whole story concerning the neural basis for bind-
ing, because temporal patterns of neural activity 
are necessarily transient. At a minimum, conjunc-
tive codes are necessary for the purposes of storing 
bindings in LTM, and for forming localist tokens 
of roles, objects, role-fi ller bindings, and complete 
propositions (Hummel & Holyoak, 1997, 2003). A 
complete account of the human cognitive architec-
ture must incorporate both dynamic binding (for 
independent representation of roles bound to fi llers 
in WM) and conjunctive coding (for LTM storage 
and token formation), and specify how these coding 
systems are related.

One example of a system that binds via vector 
addition is a model of analogical reasoning called 
Learning and Inference by Schemas and Analogies, 
or LISA (see also the SHRUTI model; Shastri & 
Ajjanagadde, 1993). In LISA, relational structures 
are represented by a hierarchy of distributed and 
localist codes (see Fig. 5.6). At the bottom, “seman-
tic” units represent the features of objects and roles 
in a distributed fashion. At the next level, these dis-
tributed representations are connected to localist 
predicate-and-object units (POs) representing indi-
vidual predicates (or relational roles) and objects. 
Localist role-binding units (RBs) link object and 
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relational role units into specifi c role-fi ller bindings. 
At the top of the hierarchy, localist proposition units 
(Ps) link RBs into whole relational propositions.

To represent the proposition contains (cup, cof-
fee), PO units (triangles and large circles in Fig. 5.5) 
representing the relational roles outside and inside, 
and the fi llers cup and coff ee, are connected to 
semantic units coding their semantic features. RB 
units (rectangles) then conjunctively code the con-
nection between roles and their fi llers (one RB con-
nects cup to outside, and one connects coff ee to 
inside). At the top of the hierarchy, P units (oval) 
link sets of RBs into whole relational propositions. A 
P unit conjunctively codes the connection between 
the RBs representing outside+cup and the RB repre-
senting inside+coff ee, thus encoding the relational 
proposition contains (coff ee, cup). Each level of the 
representational hierarchy serves an important pur-
pose. Th e semantic units capture the semantically 
rich (i.e., distributed) nature of human mental rep-
resentations. Th e three layers of localist units make 
it possible to treat each level of the hierarchy as an 
independent entity for the purposes of mapping 
and inference (Hummel & Holyoak, 1997, 2003).

When a proposition enters working memory, 
role-fi ller bindings must be represented dynami-
cally on the units that maintain role-fi ller indepen-
dence (i.e., POs and semantic units; see Hummel & 
Holyoak, 1997). In models using synchrony of 

fi ring as a binding tag, roles are dynamically bound 
to their fi llers by synchrony of fi ring (see earlier). 
In models using systematic asynchrony of fi ring as 
a binding tag, roles and their fi llers fi re in direct 
sequence. Binding information is carried in the 
proximity of fi ring (e.g., with roles fi ring directly 
before their fi llers).3

An important consequence of the approach is that 
it allows a solution to the problem of how the struc-
tured (i.e., symbolic) representations that underlie 
symbolic systems may be learned in the fi rst place 
(as noted earlier, one of the most oft-levied criti-
cisms of the symbolic account of cognition). DORA 
(Discovery of Relations by Analogy; Doumas et al., 
2008) is an account of how children and adults learn 
novel relational concepts from examples and subse-
quently use those representations in the service of 
understanding and reasoning about the world. Unlike 
other models that represent and employ structured 
representations, DORA learns structured relational 
representations from unstructured (i.e., nonsym-
bolic and nonrelational) examples. DORA starts 
with unstructured representations of objects as sim-
ple vectors of features. When DORA compares two 
or more of these objects, it learns explicit representa-
tions of any properties they share. Because DORA 
can use time as a binding tag (see earlier), the result-
ing representations are eff ectively single-place predi-
cates (represented in a distributed fashion) that can 

P unit

(a) (b)

RB unit outside+cup

contains (cup,
coffee)

contains (cup,
coffee)

knows (Jim,
contains (cup,

coffee)

knows+contains
(cup, coffee)

inside+cup

outside+cup inside+cup

knower+Jim

Jim

cup

cup

coffeePO unit

semantics

otsd. insd.

coffeeinsd.knwr. knwn. otsd.

Fig. 5.6 Representation of propositions in LISA (Learning and Inference by Schemas and Analogies). Objects and relational roles are 
represented both as patterns of activation distributed over units representing semantic features (semantic units; small circles) and as 
localist (PO) units representing tokens of objects (large circles) and relational roles (triangles). Roles are conjunctively bound to fi llers 
by localist role-binding (RB) units (rectangles), and role-fi ller bindings are conjunctively bound into complete propositions by localist P 
units (ovals). (a) Representation of contains (cup, coff ee). (b) Representation of knows (Jim, contains (cup, coff ee)). When one proposi-
tion takes another as an argument, the lower (argument) proposition serves in the place of an object unit under the appropriate RB of 
the higher level P unit (in this case, connecting contains (cup, coff ee) to the RB representing what is known). In the fi gure we represent 
these localist units (i.e., POs, RBs, and Ps) with diff erent shapes for the purposes of clarity. Importantly, these units are not diff erent 
kinds of units (i.e., they do not work diff erently). Rather, they are simply units in diff erent layers of the network. We use diff erent names 
for the units in each layer (and diff erent shapes in the fi gures) only to make them easier to distinguish.
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be bound to novel arguments. DORA then com-
bines sets of these predicates to form representations 
of complete multiplace relations (where each of the 
combined predicates serves as a role of the new rela-
tion). For example, DORA will learn predicates like 
inside(x) and outside(y) when it compares examples 
of diff erent objects inside and outside one another 
(e.g., children outside a house and coff ee inside a 
cup). DORA will then combine the inside(x) and 
outside(y) predicates to form the multiplace relation 
contains (x, y). Importantly, this is precisely the learn-
ing trajectory that children follow when they learn 
relations (e.g., Smith, 1984). Th us, DORA provides 
an account of how structured representations can 
be learned from examples, and so it addresses one 
of the major criticisms levied at structured models 
of cognition.4

Based on a small set of basic principles (notably 
comparison-based learning and constructing multi-
place relations from sets of single-place predicates), 
DORA accounts for many phenomena surrounding 
the development of relational thinking, the devel-
opment of the shape bias, and the eff ect of labeling 
on relational category learning (e.g., Doumas & 
Hummel, 2010; Doumas et al., 2008; Sandhofer & 
Doumas, 2008; Son, Doumas, & Goldstone, 2010).

Strengths
Models based on symbolic-connectionist enjoy a 

range of strengths. Because they are structured (i.e., 
they have two representational degrees of freedom 
in that they solve the binding problem), symbolic-
connectionist models support the fl exible and pow-
erful generalizations of traditional symbol systems. 
Predicates are free to vary in their arguments, and 
thus what is learned about a predicate in one con-
text potentially generalizes to other contexts and 
other arguments (see later discussion). So, like sym-
bolic models, symbolic-connectionist models can 
extrapolate beyond training examples. Th e structure 
sensitivity of symbolic-connectionist models has 
allowed them to account for a wide range of phe-
nomena in higher order cognition, including anal-
ogy making and retrieval from long-term memory 
(Hummel & Holyoak, 1997), relational generaliza-
tion and schema induction (Hummel & Holyoak, 
2003), learning relational concepts (Doumas et al., 
2008), object recognition and the role of attention 
in shape perception (Hummel, 2001; Hummel & 
Biederman, 1992), motivation (Sun, 2009), speech 
production (Chang, Dell, & Bock, 2006), explicit 
skill learning (Sun, Slusarz, & Terry, 2005), and 

creative problem solving (Helie & Sun, 2010). 
Th ere are also models of this sort that are able to 
learn structured (i.e., symbolic) representations from 
unstructured examples (Doumas et al., 2008).

Just as their structure sensitivity aff ords them 
the advantages of symbolic competence, so the 
distributed representations in symbolic-connec-
tionist models aff ord them many of the strengths 
of traditional connectionist models. Like traditional 
connectionist models (as discussed earlier), symbol-
ic-connectionist models off er a link between algo-
rithmic models and possible neural underpinnings, 
allow natural automatic generalization, integrate 
representation and learning, and degrade grace-
fully with damage. Symbolic-connectionist models 
have been used to account for implicit skill learning 
(Sun et al., 2005), categorization, refl exive infer-
ence (Shastri & Ajjanagadde, 1993), and cognitive 
defi cits due to brain damage (Morrison et al., 2004) 
and normal aging (Viskontas et al., 2004).

Weaknesses
Symbolic-connectionist models also have their 

share of weaknesses. One of the more serious short-
comings of symbolic-connectionist models is that 
they are weaker than purely symbolic models. For 
example, whereas symbolic models can deal with 
executive function and goal setting, representing 
and responding to negation and quantifi cation 
(e.g., universal—for all—and existential—there 
exists), these phenomena have yet to be success-
fully modeled within symbolic-connectionist archi-
tectures. It remains unclear how (or even whether) 
symbolic-connectionist models will be able success-
fully account for them.

A second shortcoming of symbolic-connectionist 
models is that their representational assumptions 
(and thus their resulting representations) are more 
complex than traditional connectionist models. 
Although symbolic-connectionist models are con-
nectionist in spirit, in that they are built out of col-
lections of simple processing units that are highly 
interconnected, they include additional processing 
assumptions (such as sensitivity to temporal pat-
terns of fi ring) that allow them to solve the bind-
ing problem (i.e., that provide them an additional 
informational degree of freedom comparable to that 
available to symbolic models). But whereas it might 
appear that symbolic-connectionist models make 
more nativist assumptions than traditional connec-
tionist models (in that the former assumes an addi-
tional informational degree of freedom by which to 
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carry binding information), we would argue that this 
appearance is misleading. Symbolic-connectionist 
models make assumptions about learning rules 
and activation functions similar to those made by 
traditional connectionist models. Th e additional 
assumption that symbolic-connectionist models (at 
least those that use time to carry binding informa-
tion) must make beyond traditional connectionist 
models is that units are organized in layers and are 
sensitive to what layers they are in.

Conclusions and Future Directions
An adequate account of human mental repre-

sentations—and the human cognitive architecture 
more broadly—must account both for our ability 
to represent the semantic content of relational roles 
and their fi llers, and for our ability to bind roles to 
their fi llers dynamically without altering the repre-
sentation of either. Traditional symbolic approaches 
to cognition fail to specify the semantic content of 
roles and their fi llers—a failing that, as noted by 
the connectionists in the 1980s, renders them too 
infl exible to serve as an adequate account of human 
mental representations. Traditional distributed con-
nectionist approaches have the opposite problem: 
Th ey succeed in capturing the semantic content of 
the entities they represent but fail to provide any basis 
for binding those entities together into symbolic (i.e., 
relational) structures. Th is failure renders them inca-
pable of relational generalization, which appears to be 
required for such human abilities as assessing similar-
ity based on alignment (Goldstone & Son, Chapter 
10), analogical reasoning (Holyoak, Chapter 13), 
and learning problem schemas (Bassok & Novick, 
Chapter 21).

By contrast, symbolic-connectionist models com-
bine the strengths of both the symbolic and connec-
tionist approaches. Th ese models have the potential 
to produce representations that are neurally plau-
sible, semantically rich, fl exible, and meaningfully 
symbolic. Armed with these representations, the 
symbolic-connectionist approach may be able to 
provide a powerful foundation for understanding 
human cognition. Nonetheless, models to date have 
their limitations. Th ose models based on vector mul-
tiplication (using tensor products and other forms 
of conjunctive coding as the sole basis for role-fi ller 
binding) fail to capture the natural pattern of simi-
larities among propositions. Th ere remain many 
important aspects of human cognition that sym-
bolic-connectionist models have not yet addressed, 
including planning, quantifi cation, negation, and 

other aspects of language use. It remains to be seen 
whether these are simply questions or represent fun-
damental limitations of the approach.

Notes
1. We say “in the limit” here because this statement assumes 

that the predicate is defi ned over variables open enough to take 
any kind of arguments, such as the x, y, and z in the larger . . . pro-
duction rule. By contrast, a production rule defi ned over specifi c 
objects, such as the “me and my neighbor’s dog” rule, would 
not necessarily be expected to generalize automatically to all 
new arguments (although used as part of an analogy, it might 
be expected to generalize very substantially; see, e.g., Holyoak & 
Th agard, 1995; Hummel & Holyoak, 2003).

2. Note that this correspondence is not based on anything 
as trivial as the arguments’ locations within the parentheses: Th e 
same correspondence is also suggested by the propositions larger 
(battleship, cruiser) and smaller (housecat, Rottweiler)—a cor-
respondence that also suggests that the semantics of the larger 
and smaller relations reside, not in the relations as holistic enti-
ties, but in their individual roles (Doumas & Hummel, 2005; 
Doumas, Hummel, & Sandhofer, 2008; Hummel & Holyoak, 
1997, 2003).

3. Asynchrony-based binding allows role and fi ller to be 
coded by the same pool of semantic units, which allows a sys-
tem to learn representations of relations from representations of 
objects (Doumas et al., 2008).

4. As noted by Holyoak (Chapter 13), DORA does not pro-
vide an account of what the features of relations are. Rather, it 
provides an account of how those features (assuming they exist) 
can be extracted from unstructured representations of objects 
and represented as explicit structures that can take arguments 
(i.e., as predicates).
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